J. Parallel Distrib. Comput. 73 (2013) 1170-1182

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Hint-based cache design for reducing miss penalty in HBS packet
classification algorithm

@ CrossMark

Yeim-Kuan Chang*, Fang-Chen Kuo

Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan

ARTICLE INFO

ABSTRACT

Article history:

Received 14 September 2012
Received in revised form

19 January 2013

Accepted 18 March 2013
Available online 26 March 2013

Keywords:

Packet classification
Cache

Network processor

In this paper, we implement some notable hierarchical or decision-tree-based packet classification
algorithms such as extended grid of tries (EGT), hierarchical intelligent cuttings (HiCuts), HyperCuts,
and hierarchical binary search (HBS) on an IXP2400 network processor. By using all six of the available
processing microengines (MEs), we find that none of these existing packet classification algorithms
achieve the line speed of OC-48 provided by IXP2400. To improve the search speed of these packet
classification algorithms, we propose the use of software cache designs to take advantage of the
temporal locality of the packets because IXP network processors have no built-in caches for fast path
processing in MEs. Furthermore, we propose hint-based cache designs to reduce the search duration of
the packet classification data structure when cache misses occur. Both the header and prefix caches are
studied. Although the proposed cache schemes are designed for all the dimension-by-dimension packet
classification schemes, they are, nonetheless, the most suitable for HBS. Our performance simulations
show that the HBS enhanced with the proposed cache schemes performs the best in terms of classification
speed and number of memory accesses when the memory requirement is in the same range as those of
HiCuts and HyperCuts. Based on the experiments with all the high and low locality packet traces, five
ME:s are sufficient for the proposed rule cache with hints to achieve the line speed of 0C-48 provided by

IXP2400.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The drastic growth of Internet traffic incurred from new
network services has demanded more computing power from
network devices such as routers and switches. Network services
such as network address translation, quality of service, access
control, and so forth are required to classify incoming packets
into different flows according to their headers. The routers use
a classifier consisting of predefined rules or filters to make the
packet classification decisions. A filter usually consists of five
fields: two prefixes of Internet layer-3 IP addresses (32/128
bits for IPv4/IPv6) representing the subnets of the source and
destination networks, two ranges of 16-bit numbers representing
the Internet layer-4 source and destination ports used by the
network applications, and an 8-bit protocol number. Moreover,
each filter is associated with a priority and a corresponding action.
This classifier is called a five-dimensional packet classifier. Existing
packet classification schemes are implemented and compared on
the IXP2400 network processor. New cache schemes for packet

* Corresponding author.
E-mail addresses: ykchang@mail.ncku.edu.tw (Y.-K. Chang),
p7895107@mail.ncku.edu.tw (F.-C. Kuo).

0743-7315/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.03.005

classification are proposed to reduce cache miss penalty. Data
strcuture for cache schemes and resource usage of network
processor are considered.

Performance and time-to-market are two important issues
in router design. Traditionally, the routers are implemented by
software. By adding new codes, software-based routers can be
easily enhanced with new services. Although its development time
is short, a software-based router design cannot offer sustained
high performance. To solve this problem, hardware-based routers
are implemented by using application-specific integrated circuit
(ASIC) chips, which enable such routers to outperform the
software-based ones. Hardware-based routers are, therefore, a
better choice when higher processing speed is strongly demanded.
Unfortunately, an ASIC-based router is not suitable for long-term
use because adding a new service requires redesigning the chip,
which, in turn, increases the total cost of the router.

Generally, network processors adopt multiple processing
elements to process incoming packets in parallel. Each processing
element is multi-threaded for efficient utilization of computation
and communication resources. Similar to software-based routers,
network processors are also programmable. Although network
processor-based routers do not perform as well as ASIC-based
ones, its time-to-market is its key advantage and the reason
for network processors’ increasing popularity in recent years.

http://dx.doi.org/10.1016/j.jpdc.2013.03.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2013.03.005&domain=pdf
mailto:ykchang@mail.ncku.edu.tw
mailto:p7895107@mail.ncku.edu.tw
http://dx.doi.org/10.1016/j.jpdc.2013.03.005

Y.-K. Chang, F.-C. Kuo /]. Parallel Distrib. Comput. 73 (2013) 1170-1182 1171

Therefore, the current industrial standard in router development is
to use network processors that can process packets in high speed
and can be programmed to add new services.

In this paper, we implement some well-known and efficient
packet classification algorithms: extended grid of tries (EGT) [1],
hierarchical intelligent cuttings (HiCuts) [12], HyperCuts [27],
and hierarchical binary search (HBS) [3] on an Intel IXP2400
network processor. We find that none of the implemented packet
classification algorithms is capable of achieving the maximum
line speed supported by the IXP2400 network processor (i.e.,
3.328 Gbps). The low throughput of these existing algorithms
results from a large number of memory accesses for each
search operation. As shown in this paper, a cache-like first-
level data structure in front of the base data structure of these
packet classification algorithms can boost the overall throughput.
Traditionally, research on caches tends to focus on increasing
the cache hit ratios. However, improving the cache hit ratios
is usually difficult. Cache hit ratios in the context of packet
classification are also much lower than CPU and IP lookup caches.
Therefore, to overcome the performance limitation of these packet
classification algorithms, a technique should be developed to
reduce the cache overheads and eventually improve the overall
search performance. The proposed cache schemes are designed
for dimension-by-dimension packet classification schemes such as
EGT, HiCuts, HyperCuts, and HBS. Given that HBS outperforms the
other algorithms, our focus is mainly on HBS enhanced with the
proposed cache schemes. Aside from the header and prefix caches
mentioned in previous research, we propose the use of hints stored
in each cache entry to reduce the search space of the original HBS
data structure when cache misses occur. The contributions of this
paper are as follows:

e Both header and rule caches with and without hints are
proposed as the first-level data structure in front of the base
packet classification data structure to improve the overall
search performance. Our experiments show that the proposed
rule caches with hints need only five microengines (MEs) to
achieve the maximum line speed of IXP2400.

e The proposed hint-based caches can be applied to the packet
classification algorithms that use hierarchical data structures.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 describes the baseline packet
classifier of HBS. Sections 4 and 5 describe the proposed cache
schemes and the related issues of implementation, respectively.
Section 6 evaluates the proposed cache schemes. Section 7
discusses the issues for mapping the cache schemes on recent
network processors. Section 8 concludes the paper.

2. Related work

The simplest packet classification data structure organizes the
rules in a linear array and in a decreasing order of priority, and
performs a linear search to find the first or all the matched
rules against the header fields of incoming packets. The linear
search approach is only suitable for a small classifier and is
very efficient in terms of memory requirement and rule updates.
However, for a large classifier, the linear search approach has a long
query time and, therefore, does not develop into a useful packet
classification algorithm for high-speed routers. To speed up the
packet classification query time, Srinivasan et al. [30] proposed a
two-dimensional algorithm called grid of tries (GoT). They showed
that for a classifier with 20,000 two-dimensional rules, GoT takes
about 0.9 s per query in a worst-case simulation on a PC with
300 MHz Pentium II CPU and about 7.5 MB memory space. The
authors discovered that the scheme cannot be easily extended to
more than two dimensions, and so proposed another generalized

scheme called Cross-Producting [30]. This scheme builds a table of
all possible field interval combinations (cross-products) and pre-
computes the highest priority rule matching of each cross-product.
Searches can be done quickly by doing separate lookups in each
field, combining the results into a cross-product, and indexing
these results into the cross-product table. Unfortunately, the size
of this table grows astronomically with the number of rules.
Srinivasan et al. also proposed another algorithm called tuple-
space search [29]. This scheme partitions the rules of a classifier
into different tuple categories based on the number of specified
bits in the rules. Afterwards, hashing is used among rules within
the same category. The main disadvantage of this scheme is the
use of hashing, which results in a long search time and makes non-
deterministic updates.

Lakshman and Stiliadis [19] proposed a hardware-optimized
scheme known as the Lucent Bit Vector scheme. First, the query
process of this scheme searches each dimension separately to
yield the set of rules that match the packet for each dimension.
The search algorithm can be a binary trie, binary range search
(BRS), or any one-dimensional IP lookup scheme. Second, the
set of matched rules in all dimensions are intersected by using
bitmaps to yield the set of final matched rules in all dimensions.
One drawback of this scheme is the need for a hardware-assisted
parallel architecture, which is impractical for large classifiers due
to its large memory consumption. Gupta and McKeown proposed
a scheme called the recursive flow classification (RFC) [11], which
is very fast but requires pre-computation to construct two or
more levels of indexed cross-product tables. As a result, a large
amount of memory and parallel hardware support are needed.
Other schemes include FIS-trees [8], segment tree [31], HiCuts [12],
and HyperCuts [27], which are all decision-tree-based packet
classification algorithms. The list of related works described above
is in no way complete. Other schemes can be found in two survey
studies [13,32]. In the current study, we are interested in packet
classification schemes that are related to network processors and
use caches.

Several existing packet classification schemes have been
implemented on network processors. In [28], Lucent bit vector [19]
was implemented on IXP1200 based on two IXP software
programming models: the context pipeline model and the
functional pipeline model for the pipeline design and parallel
design of bit vector scheme, respectively. In the functional pipeline
model, different functions are performed in the same ME of
IXP1200, and it is concluded that the parallel design outperforms
the pipeline design.

Two methods were proposed in [35,22] to reduce the memory
requirement of RFC. The difference between these two studies is
that the method in [35] reduces the memory in phase 0 of RFC,
whereas the method in [22] reduces memory in phase 1 of RFC.
In [22], the bitmap-RFC is the modified RFC scheme implemented
on the IXP2800 network processor. The bitmaps are used to
compress the cross-product table of RFC. The important operation
to count the number of set bits in the bitmap is solved by the built-
in bit-manipulation instruction (pop_count) provided by IXP2800.
For a table of 5700 rules, bitmap-RFC reduced the required memory
from 149.9 MB to 43.4 MB.

In [9], the authors implemented a multidimensional multi-bit
trie-based packet classification scheme on IXP2400. To solve the
memory explosion problem coming from bit expansion, the level-
crossing scheme was adopted. However, using this scheme may
require back-tracking operations when searching the trie, which
results in a greater need for memory accesses. By using the level-
crossing scheme, the proposed solution only needs to consume
2.3 MB of memory for a set of 1000 rules, which is much better
than the initial memory requirement of 55 MB.

In [24], the well-known HiCuts scheme was modified and the
HyperSplit scheme was proposed. Instead of cutting the space to

1172 Y.-K. Chang, F.-C. Kuo /J. Parallel Distrib. Comput. 73 (2013) 1170-1182

equal-sized subspaces using the bits in prefixes, HyperSplit divides
the searching space along the endpoints of ranges. Thus, when
searching the decision tree, the header field is compared with the
endpoint values to obtain the child link. With the rule set of about
5000 rules, the decision tree with a maximum of eight linked-list
nodes consumes about 10 MB memory.

Several papers [5,7,36,4] have studied the cache schemes for
packet classification. Cache architecture is proposed to support
packet classification at memory access speeds [36]. The proposed
cache belongs to the category of header caches. The dynamic
set-associative scheme used in the proposed cache architecture
employs the n-universal hash functions to best approximate fully
the associative near-LRU cache replacement. A Bloom-filter-based
cache proposed in [5] allows a small amount of classification
inaccuracy, but decreases the size of packet classification cache
by almost a magnitude over exact caches. Bloom filter keeps the
information on whether the cache is a hit or a miss, but not
the complete header information. A mathematical model was
also presented to sustain the Bloom filter for the decrease in
probability of a false positive situation, e.g., cache misclassification.
Although the Bloom-filter-based cache uses bit vectors to indicate
the matched rule, it is not efficient because there are a large
number of distinct interfaces. Another proposed cache scheme is
the digest cache, which performs better than the Bloom-filter-
based caches in terms of extensibility, computational complexity,
and memory efficiency [4]. Digest cache stores only a hash of the
packet’s flow identifier, not the flow identifier itself. Therefore,
set-associative caches and different cache replacement policies
can be easily applied to the digest cache. When the digest is
matched, however, the cache entry cannot ensure an accurate
classification result. Thus, the authors also proposed the two-level
cache architecture to solve the misclassification problem.

Different from the previous schemes, the smart rule cache
scheme stores rules instead of the packets’ header field values [7].
Smart rule cache merges different flows that match rules with
the same action into a single evolving rule. Smart rule cache is
implemented by using additional registers to store these evolving
rules and additional logic to match incoming packets to these rules.

Compared with the works described above, the proposal in [5,
4] does not require additional hardware. In other words, adopting
the schemes proposed in [7,10] into IXP2400 is not easy. In contrast
with [5,4], our proposed cache scheme will not lose the accuracy
of classification. Instead of focusing on how to improve the cache
hit ratios, we focus on reducing the search overhead caused by
cache misses. The idea of hints is introduced to improve the overall
throughput of the cache system without additional hardware
supports (i.e., software-based cache). When the same hashing keys
are used, the hit ratios of the proposed hint-based schemes remain
the same as those that do not use hints.

3. Baseline packet classification

The baseline packet classification algorithm enhanced by the
proposed cache designs consists of a hierarchical structure of
sorted arrays. Each level of these arrays is an expansion list
constructed by BRS for range fields [6,20,31] or a binary prefix
search (BPS) for prefix fields [2]. A five-level hierarchical structure
is usually needed for a typical five-dimensional rule table. First,
we briefly describe the BPS and then the two-level hierarchical
structure of sorted prefixes.

3.1. Binary prefix search

In general, the binary search works only on sorted lists. There-
fore, we need to develop a mechanism to compare and sort

prefixes. The prefix comparison rule that compares prefixes of dif-
ferent lengths is based on the inequality of 0 < * < 1 for ternary
numbers [2,3]. For example, the relationship among the three 3-
bit prefixes 10*, 1*, and 11* is 0** < 10* < 111. We compare
the prefixes from the leftmost bit (i.e., the most significant bit) to
the rightmost bit (i.e., the least significant bit). As a result, we ob-
tain 0** < 10* and 0** < 111 because of the leftmost bit and
10* < 111 because of the middle bit.

Fig. 1(a) shows six sorted 8-bit prefixes based on the prefix
comparison rule. Given that the prefixes may enclose others (i.e.,
prefix enclosure property), a binary search directly on the list of
sorted prefixes may fail. The binary search operation for address
Dst = 01011000 is considered in Fig. 1(a). The first prefix for
comparison is the middle prefix F = 01*. Given that F matches
Dst, F is temporarily treated as the longest prefix match (LPM).
The search will continue on the sub-list of B, A, and C because Dst
is smaller than F. By following the same search procedure, prefix
A and prefix B will be compared consecutively with Dst. Since A
and B mismatch Dst, the final LPM is F. The correct LPM should be
C = 01011*. However, C is not compared with Dst in the search
process.

To solve the above mentioned problem, [2] proposed generating
some auxiliary prefixes that will inherit the routing information
of the original LPM (e.g., C) and then placing them at locations
where the search process can find them. For example, if we insert
an auxiliary prefix 01011 000 that inherits the routing information
of C, then the search operation for Dst will succeed. In general, if
one prefix encloses another, the enclosing prefix (e.g., C) is split
into two prefixes that cover both sides of the enclosed prefix (e.g.,
A). A detailed algorithm which generates auxiliary prefixes for
binary search can be found in [2,3]. The expansion list, which is
the final sorted prefix list from Fig. 1(a), is shown in Fig. 1(b) with
four auxiliary prefixes. The total number of prefixes and auxiliary
prefixes needed is at most 2N — 1 for a routing table of N prefixes
in[2].

3.2, Binary range search

We use the endpoint definition for ranges proposed in [6] to
construct the endpoint array for binary searches. The two integer
endpoints of arange [L, U] are defined as L — 1 and U when L # O,
but only one endpoint U is defined when L = 0. This definition
is different from the traditional definition in which L and U are
the endpoints for range [L, U]. The advantage of this new endpoint
definition is that the number of endpoints will be much less than
what is required in the traditional definition. The BRS algorithm
(BRS_search) is simple and can be found in [3].

3.3. Hierarchical binary search for packet classification

At this point, we illustrate how the BPS and BRS can be applied
for multidimensional packet classification. Let a d-dimensional

rule set R consist of n rules, = (F1;,...,Fd;), where i =
1,...,n, and the kth field (Fk;) is a prefix or a range. We use
r = (F1, ..., Fd) when no confusion has incurred. The basic data

structure proposed in this paper is a hierarchical expansion list of
BPS and BRS, and is built as follows:

1. The F1 expansion list is constructed based on BPS for the prefix
field or BRS for the range field by using the F1 field values of the
rules.

2. For a rule R = (F1,...,Fd), the sub-rule (F2,...,Fd) is
duplicated in the element Elem of F1 expansion list if the F1
field value of R covers the range associated with the prefix
for BPS or the elementary interval for BRS in element Elem.
This operation is called rule pushing. Each element of the F1
expansion list now contains a number of (d — 1)-dimensional
sub-rules (F2, ..., Fd).

Y.-K. Chang, F.-C. Kuo /]. Parallel Distrib. Comput. 73 (2013) 1170-1182 1173
Index 0 1 2 3 4 5
b [8]a]c|F|e]p] [F]8]r]ci|a]c]F]E]o]a]
A0 G WS S S W SR G G W G ST
Prefix o 0 0 « = 1 00 0 0 0 0 = =+ 1 1
0 1 | * % 1 0 0 * 1 1 | I * 1 1
1 1 1 * % 0 E | * 1 1 1 % * 0 *
1 0 * * % 0 1 * 0 0 = = * 0 *
0 0 * * % 0 0 * 0 0 = =% * 0 *
* 1 * * * 1 M * * * 1 * * * 1 M
(a) Sorted list. (b) Sorted expansion list.
Fig. 1. Binary prefix search example.
Rule i F2 | 1|B1|X1| 1|D1|A1|
A | (AD | O Y ¢ |Y1|B1|X1|C1|D1|A1|
B | 00001 (B1)| 000** 0 0O 0 0 =
C [0 (€D = 8 8 0 O o B2 A2 A2 A2 A2 A2 A2
D |o#eex p1y| LU 0 0 o+ ¥ & % sub- D2 B2 D2 C2 D2
(D2) 0 1 % ® % ® rules D2 D2
(a) 2D rule table example. (b) F1 expansion list. (c) Rule pushing in F1.
wlmfe] [wm] []a]c]m)]
0 0 1 0 1 0 0 * 1
0 | 1 1 1 0 1 * 1
0 * 1 * 1 * E 1
* * * * * * * * *
(d) F2 expansion lists.

{ Element data structure
element structure {

i prefix;

Level-1 |00000|00001| 00x [oor*T o*

= I”/V child; #pointer to next level

size; # size of next level

I ‘,(
~
~ l PREERN

~ N
A2,B2,D2 SN A2 D2 N,

~< i orules;

A2,C2.D2 TS

Level-2 [000*] O1* J111*]

|01x|111x| |00*|01*| *

A2
|111x| [or=]

Level-3 [C, A—’ A 1

(e) Hierarchical expansion list, where the gray nodes denote the switch nodes for the packet containing headers

[00001, 00 000].

Fig. 2. 2D example.

3. Steps 1 and 2 are repeated for each dimension, but the
rule-pushing operation in step 2 is not required for the last
dimension.

The two-dimensional rule table example consisting of two
prefix fields is considered (Fig. 2(a)). First, we build the F1
expansion list of the rule table (Fig. 2(b)). The F1 expansion list
consists of six prefixes (elements), in which X1 and Y1 are auxiliary
prefixes. Second, the rule-pushing operations are performed. In
other words, the rule of an enclosing F1 prefix in an F1 expansion
list is duplicated in the element whose associated prefix is covered
by it. For example, F1 prefix A1 covers all the other five prefixes,
B1, C1, D1, X1, and Y1. Thus, the sub-rule (A2) is duplicated in
the five associated elements of the F1 expansion list (Fig. 2(c)).
To this point, each constructed element of the expansion list
contains the F2 field values. Finally, we need to construct all the
F2 expansion lists (Fig. 2(d)). Given that F2 is the last dimension,
no rule pushing is required. Fig. 2(e) shows the final two-level
hierarchical expansion list and the detailed element data structure.
The “rules” field of the element data structure records the matched
rules at the element. The ‘rules’ fields of the elements in the
bottom-level expansion lists are usually non-empty. If the element
containing non-empty “rules” field is in the internal expansion list
(i.e., not at bottom-level), then some of the common matched rules

will be pushed up to save memory space, which is similar with
HyperCuts [27]. If there is more than one rule in the “rules” field
of an element, the best matched rule is pre-computed to speed up
the search time.

The complete multidimensional packet classification HBS_
search() algorithm that uses the binary prefix or range searches
can be found in [3]. First, the F1 expansion list is searched to find
an element (switch node) that contains a pointer for the next-
level F2 expansion list built from the subset of rules that match
the F1 header of the packet. Second, we search the next-level
F2 expansion level to find the switch node in dimension 2. The
search continues until it reaches the bottom-level expansion list
to obtain the highest priority matched rule. We assume that the
first two header fields of the incoming packet are [00 001, 00 000]
and the packet classification search is performed on the two-
level expansion list (Fig. 2(e)). Third, after searching the first-level
expansion list with F1 value of 00001, we find that the LPM is the
second leftmost prefix 00001 (switch node). Finally, by following
the “child pointer” of the switch node, we locate the next-level
expansion list and perform the binary search with F2 value of
00000. The prefix 000* is found to be the match. Therefore, the
matched rule is B.

1174 Y.-K. Chang, F.-C. Kuo /J. Parallel Distrib. Comput. 73 (2013) 1170-1182

Table 1

The H-cache scheme.

0 F1tag ‘ F2 tag | F3 tag | F4 tag | F5 tag actiong
2™ —1 | Fltag ’ F2 tag | F3 tag | F4 tag | F5 tag actionym _q

4. Proposed cache schemes

4.1. Header cache (H-cache)

In the traditional header cache (H-cache), five-tuple header
field values from the incoming packets and the classification result
(matched rule ID or action) are cached. If all the header fields of the
incoming packet exactly match one of the cached five-tuple header
field values (i.e., a cache hit occurs), the cached classification result
can be returned directly without searching the packet classification
data structure under study. However, if a cache miss occurs, we
have to search the rule data structure all over again. Table 1 shows
a direct mapped cache table consisting of 2™ entries. To index
the header fields of an incoming packet into one of the 2™
cache entries, we need a hashing function H(F1, F2, F3, F4, F5)
to perform a many-to-one mapping. Specifically, the five header
field values of an incoming packet will be stored in the ith cache
entry if i = H(F1, F2, F3, F4, F5)%2™, where % is the modulus
operator. After locating the cache entry for an incoming packet, we
have to compare the tags stored in the located cache entry with
the packet’s header fields one by one to ensure an exact match. A
set-associative cache can be built similarly. In this paper, the CRC
function supported by the Intel IXP2400 network processor is used
to devise the needed hashing function, which will be discussed in
a later section.

4.2. Header cache with hints (H-cache-hint)

We describe the basic header cache scheme with hints (H-
cache-hint), which is proposed for the packet classification
algorithm, by using a dimension-by-dimension hierarchical data
structure (e.g., EGT [1], HiCuts [12], and HBS [3]). To ensure a
precise description, we only show how the H-cache-hint scheme
works for HBS. The idea of the basic H-cache-hint scheme comes
from the partial hits, which are defined as cache misses when the
first k header field values of the incoming packet match the first k
tags and the (k + 1)th header field value mismatches the (k+ 1)th
tag of a cache entry. In H-cache, we have to perform a full search
process to find a match after a cache miss. However, if we also
cache the index of the switch node at the kth level expansion list,
we can use the pointer for the (k4 1)th level expansion list, which
is stored in the kth level switch node, and directly jump to the
(k + 1)th level expansion list to complete the search. As a result,
we can avoid searching the first k levels of the expansion lists and,
therefore, reduce the cache miss penalty. In the n-dimensional rule
sets, we need to cache the n — 1 indices of switch nodes on the first
n — 1 levels of the expansion lists of HBS. Table 2 shows a direct
mapped cache table consisting of 2™ entries that employ the basic
H-cache-hint scheme. These cached indices of the switch nodes are
the hints that can be used to reduce the search time. However, if
the first header of the incoming packet mismatches the first field
tag of all cache entries, we still do not gain anything from the hints
in the cache. To solve this problem, we propose the modified H-
cache-hint (MH-cache-hint) for HBS.

The modified H-cache-hint scheme employs the primary
feature of HBS, in which the expansion lists in all the levels are
sorted arrays. Consider the case when the first k— 1 header fields of
the incoming packet match the first k — 1 tags, and the kth header
(Fk_header) mismatches the kth tag (Fk_tag) of a cache entry. The

Table 2

The basic H-cache-hint scheme.

0 F1tag F2 tag F3 tag F4 tag F5tag | actiong
Flindex | F2index | F3index | F4index

om_1q F1tag F2 tag F3 tag F4 tag F5tag | actionym_4
Flindex | F2index | F3index | F4index

search is performed in the kth level expansionlist[1 . .. Fk_index] if
Fk_header < Fk_tag or in the kth level expansion list[Fk_index+1 . ..
Fk_max] if Fk_header > Fk_tag, where Fk_max is the size of the kth
level expansion list obtained from the element Fj_; _index of the
(k — 1)th level expansion list. Thus, we need to cache n indices of
switch nodes for the n-dimensional rule set. Table 3 shows a direct
mapped cache table consisting of 2™ entries that employ the MH-
cache-hint scheme.

4.3. Rule cache

In I[P address lookups, previous studies [10,34,14] show that
caching prefixes performs better than caching single addresses
(i.e., header cache) because of the spatial locality of the IP
destination addresses in the packet stream. Based on the same
reasoning, we can cache prefixes for the IP address fields
and ranges for the port fields in the multidimensional packet
classification to obtain a better cache hit ratio. In this section, we
propose a cache design called rule Cache (R-cache), in which HBS
stores rules in the cache.

Fig. 3 shows the diagram of H-cache (a) and R-cache (b). The
bold texts in the shaded boxes show the differences between H-
cache and R-cache. The diagram of H-cache is similar to that of the
traditional cache. In R-cache, the scheme needs to keep the source
prefix and destination prefix. The address is matched against to
the prefix to the matched cache entry. If a cache hit occurs, no
additional packet classification operation is necessary. However,
if a cache miss occurs, cache entry updating is needed after packet
classification. Fig. 4 describes the details for computing the prefix
to be written in the cache entry.

In HBS, five expansion lists are searched sequentially for each
incoming packet. The results of searching these five expansion
lists are two prefixes for prefix fields, two elementary intervals
for range fields, and one singleton value for the protocol field. As
all elementary intervals are disjoint from one another, caching the
two elementary intervals found for range fields in HBS causes no
problem, as does caching singleton values for the protocol field.
However, caching the prefixes found may lead to incorrect results
from cache hits because of the enclosure property of prefixes.
Before we describe the details of finding the correct prefixes to
be stored in the cache for prefix fields, we summarize the five-
tuple rule that can be stored in the R-cache after searching the
HBS. Let the five-tuple rule after searching the HBS be (PFX1, PFX2,
EI1, EI2, SGLTON). The computed five-tuple rule that can be stored
in the cache is (C_PFX1, C_PFX2, EIl, EI2, SGLTON), where C_PFX1
and C_PFX2 are computed from PFX1 and PFX2, respectively, by the
algorithm proposed below.

Let the LPM be X for the destination IP address IP; of an
incoming packet. If a prefix Y is also contained in X and Y does
not match IPq, caching X for the current address IP; produces
incorrect results for cache hits from subsequent packets containing
the destination IP address IP, that matches Y. Consider the four
prefixes in the first field of a rule table shown in Fig. 2(a) and
the expansion list in Fig. 2(b). Two auxiliary prefixes 00000 and
00* in the expansion list are generated. Assume that an incoming
packet destined at the address 00011 is followed by another
packet destined at 00 001. After binary prefix search operations are
performed for IP address 00011, the LPM is 00*(X1). If we cache

Y.-K. Chang, F.-C. Kuo /]. Parallel Distrib. Comput. 73 (2013) 1170-1182 1175
Table 3
The MH-cache-hint scheme.
0 F1tag F2 tag F3 tag F4 tag F5 tag actiong
F1index F2 index F3 index F4 index F5 index
om 1 F1tag F2 tag F3 tag F4 tag F5 tag actiongm _q
F1index F2 index F3 index F4 index F5 index

START

v
| Get Cache Index using CRC |

Cache Hit?
Header
Comparison

Packet Classification

A 4

Update Cache
Using Packet Header

Cache Hit?
Prefix
Comparison

Packet Classification

A 4

Update Cache
Using Packet Prefix
as Figure 4

!

(END J+

(END J—

(a) H-cache.

(b) R-cache.

Fig. 3. Flow diagrams for H-cache and R-cache.

// D = ds;...d, is the target IP address.

{
01 LCA_left = LCA(D, List[i-1].prefix);
02 LCA right = LCA(D, List[i+1].prefix);

// List[] is an array storing the expansion list of sorted prefixes.

// List[i].prefix is the longest matched prefix of D found by the binary prefix search (BPS)
// 2 is the enclosure operator, e.g., X © Y means prefix X encloses prefix Y

// The Longest Common Ancestor of two prefixes A = ay._;...dg and B = by_;...bg is

// LCA(A, B) = cy_q...c*, where ¢, = a, = byand ¢, # * for W—1>k >jand a., # b;.
Algorithm Compute_Cached_Prefix(Element List[], Index i, Address D)

03 if (List[i].prefix o List[i+1].prefix and List[i].prefix o List[i—1].prefix)

04 len = max(LCA_left.length, LCA_right.length);
05 else if (List[i].prefix D List[i—1].prefix)

06 len = LCA_left.length;

07 else if (List[i].prefix o List[i+1].prefix)

08 len = LCA_right.length;

09 else len = List[i].prefix.length — 1;

10 return ds;...ds1en™;

}

Fig. 4. Compute the prefix to be cached after finishing the processing of a cache miss.

X1, subsequent packets destined at 00001 obtain cache hits and
incorrectly return X1 as the LPM. The correct LPM is 00001 (B1).
This problem can be solved easily by using the data structure of the
binary trie as follows. In the binary trie, each node corresponds to
a prefix. Specifically, a node in level n represents a prefix of length
n. When performing the search operation in the binary trie, we
traverse the binary trie until all 32 bits are exhausted (i.e., level 32
isreached) or a null child pointer of a node is encountered. Let X be
the parent of the non-existing node pointed to by the null pointer
encountered last. We can simply cache the prefix associated with
X. For example, the cached prefix for address 00011 should be

prefix 0001* in the five-bit address space although the LPM found
for address 00011 is 00* (Fig. 2(Db)).

Details on how to compute a proper prefix after the LPM is
found in HBS are described below. Let List[i].prefix in the expan-
sion list be the LPM for an IP destination address D = d3j.5dp.
We have to examine the enclosure relationship with the left and
right neighboring prefixes of List[i].prefix, such as List[i — 1].prefix
and List[i + 1].prefix, respectively. If List[i].prefix does not en-
close List[i — 1].prefix and List[i + 1].prefix, List[i].prefix can be
stored in the cache directly. Otherwise, we have to compute the
proper prefix to be stored in the cache. Fig. 4 shows the detailed

1176 Y.-K. Chang, F.-C. Kuo /J. Parallel Distrib. Comput. 73 (2013) 1170-1182

algorithm Compute_Cached_Prefix(). The first two lines compute
LCA_left = LCA(D,List[i — 1].prefix) and LCA_right = LCA(D, List
[i + 1].prefix), which are used later. In lines 3 and 4, if List[i].prefix
encloses both List[i — 1].prefix and List[i + 1].prefix, we com-
pute the maximum length (len) of LCA_left and LCA_right. Then,
we use this maximum length to compute the prefix ds;.sd};_., of
length len + 1 to be stored in the cache. If List[i].prefix only en-
closes List[i — 1].prefix, we compute the length (len) of LCA_left,
and if List[i].prefix only encloses List[i + 1].prefix, we compute
the length (len) of LCA_right. If line 9 is satisfied, we compute
len = List[i].prefix.length — 1 to cache List[i].prefix. The computed
cached prefix for HBS is the same as that in the binary trie.

4.4. Rule cache with hints (R-cache-hint and MR-cache-hint)

When cache misses occur, schemes similar to H-cache-hint and
MH-cache-hint schemes (R-cache-hint and MR-cache-hint) can be
developed to reduce search times by using hints. The cache data
structure shown in Tables 2 and 3 can be utilized. When cache
misses occur, the same search process used for H-cache-hint and
MH-cache-hint can also be employed for the R-cache-hint and MR-
cache-hint schemes.

5. Implementation issues in the IXP2400 network processor

5.1. IXP2400 hardware brief

The Intel IXP2400 network processor has an ARM compatible
XScale core and eight MEs that can run in parallel or pipeline
fashion for processing packets at a high-speed processing rate.
Each ME has eight hardware threads that can execute concurrently
[15,16,25].

Four kinds of memory units of different sizes and speeds
can be accessed by IXP2400 MEs: local memory, scratchpad,
static random-access memory (SRAM), and dynamic random-access
memory (DRAM). Each ME has a local memory size of 640*32 bits,
which is private and cannot be shared with other MEs. Scratchpad
is the biggest on-chip memory (16 kB in IXP2400). It is usually
used as a hardware ring to pass metadata information of packets
between MEs. DRAM is used to store the payloads of incoming
packets. SRAM is usually used to store the data structures of IP
lookups and packet classification. Local memory is the smallest
and fastest memory unit. The speed and size of SRAM are between
those of the scratchpad and DRAM.

5.2. Resource allocation

Given that IXP2400 has eight MEs, we allocate one ME to
receive packets (receiving ME) and another to transmit packets
(transmitting ME). The remaining six MEs (processing MEs) can
be used to implement the HBS scheme with the proposed cache
designs. In general, as the number of processing MEs increases, the
forwarding rate of HBS also increases. However, existing packet
classification algorithms cannot reach the maximum line speed of
IXP2400 because a large number of memory accesses are needed
for each search operation.

Among the four memory types in IXP2400, SRAM is selected
to store the data structure of the HBS scheme. Our IXP2400
Development Board Radisys ENP-2611 has two channels of SRAMs,
each of which is 4 MB. In the later version of ENP-2611, each SRAM
is 8 MB, which is sufficient to store the data structure of the rule
table. As for the proposed cache design, we abandoned the idea
of using local memory to implement caches because local memory
has three disadvantages. First, local memory can only store 160 16-
byte cache entries because its size is only 640*32 bits. Second, local
memory is normally used as an alternative storage called spilling

region [17] for variables that cannot be allocated to general purpose
or transfer registers. Therefore, available local memory that can
be used for caches becomes even smaller. Moreover, accessing the
part of local memory that implements caches is interfered with by
operations on variables stored in spill regions. Third, local memory
is private to each ME, and thus, data stored in the local memory of
one ME cannot be shared by another ME.

5.3. Data structure design of evaluated packet classifier

As for the implementation issues for packet classification in a
real environment such as the Intel IXP2400 network processor, we
have to consider the limitation of system resources and the char-
acteristics of real-world rule sets. In practice, a two-level hierar-
chical expansion list is sufficient because only a small number of
three-dimensional sub-rules are pointed to by each element of the
second-level expansion list. As a result, a simple linear list sorted
by priority can be used for the last three dimensions. In this pa-
per, the two prefix fields (i.e., source and destination IP fields) of
the rules are used to construct the two-level hierarchical expan-
sion list. Using the two prefix fields is more efficient than using the
two range fields because the numbers of distinct field values in the
source and destination IP address fields are much larger than those
in the source and destination port fields, respectively. For exam-
ple, in ACL, Firewall, and IPC tables generated by ClassBench, the
number of distinct field values in F3, F4, or F5 is fixed at one value
(wildcard) or at a small range of values.

Fig. 5(a) shows the implementation details of the example in
Fig. 2. Fig. 5(b) and (c) show the detailed data structures for the
level-1 and level-2 expansion lists and the level-3 sub-rule list.
All level-2 expansion lists are combined into a single list called
level-2 combined list, from which some redundant expansion lists
are removed. For example, the second leftmost expansion list
of 01* and 111* is the sub-list of the leftmost expansion list
and can thus be removed. Similarly, level-3 sub-rule lists can
be combined into a single list called level-3 combined list, from
which redundancy is also removed. As the original BPS allows the
wildcard field (i.e., *), we need 33 different lengths (i.e., 0-32)
that require six bits to represent them. In our implementation,
we prohibit wildcards by expanding them to 0*, 1*, or both. Thus,
five bits are sufficient. For example, the wildcard field value in
the level-1 and level-2 expansion lists in Fig. 2 can be changed
to 1* (Fig. 5(a)). Figs. 5(b) and 4(c) illustrate the detailed element
data structures of the level-1 list, level-2 combined list, and level-3
combined list. The Baselndex field in the element12 data structure
is set to 22 bits, which can support the level-3 sub-rule array
of at most 222 elements for rule tables much larger than the
ones used. In element12, only the first three fields are needed for
HBS without cache and HBS with H-cache and MH-cache-hint. As
the total size of these first three fields exceeds 64 bits and the
minimum memory unit of SRAM in IXP2400 is 4 bytes, we use
12 bytes for element 12. The unused space can then be used for
the proposed cache schemes, R-cache and MR-cache-hint, which
include the fields CoverLeft, CoverRight, LLength, and RLength.
When we compute the prefixes to be cached (e.g., List[i].prefix), we
have to figure out if List[i].prefix encloses its left (List[i — 1].prefix)
or right neighboring prefix (List[i+ 1].prefix) (Fig. 4). Therefore, the
two fields, CoverLeft and CoverRight, are designed for these two
conditions. Moreover, LLength and RLength represent the prefix
lengths of List[i — 1].prefix and List[i 4+ 1].prefix, respectively.
With CoverLeft and CoverRight pre-built in the search process, the
enclosure operations in Fig. 4 are not needed.

5.4. Data structure design of proposed caches

As the cache is searched by software, searching a set of cache
entries will be very slow if the cache is implemented as a set-

Y.-K. Chang, F.-C. Kuo /]. Parallel Distrib. Comput. 73 (2013) 1170-1182

1177

element12 structure { // 12 bytes

prefix [00000[00001] 00* J001*]| O*

Level-l “gize 713 15

N
\
o)
\

AD\ ¢ AD ;APTT

T+ IP: 32 bits
| Length: 8 bits
Baselndex: 22 bits; to level 2 or 3 arrays
Size: 8 bits; size of the next level
CoverLeft: 1 bit

ABDI L0 o227 e CoverRight: 1 bit
Pl Yidd y LLength: 8 bits
Level-p Pefix[000% T 01* TTI1#T 00% T OI* [1% TT1I* RLength: 8 bits
i I | |

size | 1|

Unused: 8 bits

Level-3

4
\ SPortBegin: 16 bits;

}
(b) Data structures for levels 1 and 2

element3 structure { //12 bytes
DPortBegin: 16 bits;
DPortEnd: 16 bits;

SPortEnd: 16 bits;
Protocol: 16 bits;
Action: 16 bits; Filter ID

}

(c) Data structure for level 3

Fig. 5. HBS data structures implemented in SRAM of the IXP2400 network processor.

R-cache-hint structure {
H-cache-hint structure { SIP: 32 bits;)
SIP: 32 bits! R-cache structure { DIP: 32 bits;
DIP: 32 bits; SIP: 32 bits] SPort: 16 bits;
H-cache structure { SPort: 16 bits: DIP: 32 bits; DPort: 16 bits;
SIP: 32 bits] DPort: 16 bits; SPort: 16 bits; Protocol: 8 bits;

DIP: 32 bits; Protocol: 8 bits; \ 5 ds DPort: 16 bits; Valid: 1 bit; 5 words
SPort: 16 bits; FilterID: 16 bits: (> 0TS Protocol: 8 bits; >4 words FilterID: 13 bit;

DPort: 16 bits; 4 words Fllndex: 8 bits: Valid: 1 bit; SLen: 5 bits
Protocol: 8 = bits; F2Index: 16 bits; FilterID: 13 bit; DLen: 5 bits
NoUse: 8 bits F2Begin: 8 bits SLen: 5 bits Fllndex: 8 bits;
FilterID: 16 bits; F2End: 8 bits DLen: 5 bits F2Index: 24 bits; /

} } ! }
(a) H-cache. (b) MH-cache-hint. (c) R-cache. (d) MR-cache-hint.

Fig. 6. Data structures for header and rule caches.

associative cache. Thus, we implement the cache as a direct
mapped cache in our experiments. As a result, different cache
policies [21] are not studied in the paper.

Fig. 6 shows detailed cache data structures for the proposed
cache schemes: H-cache, MH-cache-hint, R-cache, and MR-cache-
hint. Each H-cache entry consists of 104 bits for the five-
dimensional header fields of packets plus 16 bits for rule ID
(Fig. 6(a)). MH-cache-hint in Fig. 6(b) contains the fields Fi1Index
and F2Index, which are the switch node indices of the level-1 and
level-2 expansion lists, respectively. The fields F2Begin and F2end
are the indices in the level-2 expansion list. With these two fields,
one memory access to the switch node is saved. However, if the
two prefix fields stored in cache match the destination and source
IP addresses of the packet, but the remaining three fields in cache
do not match the destination and source ports and protocol of the
packet, we have to search the level-3 sub-rule array by obtaining
information from the switch node in the level-2 expansion list.

In this paper, R-cache is designed to contain two prefix fields
(SIP/SLen and DIP/DLen) and three exact values in the other three
fields (Fig. 6(c)) because we implement the hierarchical expansion
list as a two-level structure. Prefixes to be cached are computed
based on the algorithm in Fig. 4. Fig. 6(d) shows the similar data
structures of MR-cache-hint and MH-cache hint. The number of
bits reserved for all fields in the cache structures is sufficient for
the rule table of 5000 rules used.

6. Performance evaluation

In our experiments, the code is developed based on the
“receive—process—transmit” programming model [18]. Receiving
ME is dedicated to receiving packets, and transmitting ME is
dedicated to transmitting packets. The remaining six MEs, called
processing MEs, are used for the main processing tasks. Processing

MEs obtain packets from the receiving ME and send processed
packets to the transmitting ME. All codes in processing MEs are
written in Micro C, whereas codes in the receiving and transmitting
MEs are written in microcode, which is taken from the Static
Forward Project provided in ENP SDK 3.5 R4 [26], the software
development kit for the Radisys ENP-2611 IXP2400 network
processor development board [25]. The Workbench development
tool of IXA SDK 3.51 [17] is used to conduct simulations, and the
frequency of both XScale and ME is set to 600 MHz in all tests.
Workbench is a cycle-accurate simulator. Obtained results are not
affected much by differences between system architectures, types
of CPU, memory sizes, or system loads. Therefore, the confidence
interval of our results is close to 100% by repeating each test 10
times.

The data structure of the packet classification scheme in the
simulation is first built by using C codes running in a standard
personal computer. This pre-built data structure is then loaded
into SRAM by Workbench startup scripts and are not modified
during the simulation. However, data structures for proposed
caches are maintained dynamically by processing MEs. The packet
classification data structure is stored in channel 1 SRAM while the
cache data structures are stored in the channel 0 SRAM of the
IXP2400 network processor.

ClassBench [33] is used to generate rule tables for the experi-
ments. The rule table with n five-dimensional rules is denoted by
Tn, where n = 1000-5000. We only show the results for the ta-
bles of 5000 rules (i.e. T5000) with “firewall” setting because the
performance results of other settings, ACL and IPC, are similar. Two
packet trace files (i.e., TS000H and T5000L) of 50,000 packets are
also generated, where suffixes H and L indicate high and low tem-
poral locality, respectively. The parameters used to generate these
traces are a three-tuple of (Pareto parameter a, Pareto parameter b,
scale), which is set to (1, 1, 10) and (1, 0.1, 10) for high and low

1178 Y.-K. Chang, F.-C. Kuo /J. Parallel Distrib. Comput. 73 (2013) 1170-1182

Table 4
Forwarding rates in MPPS.
Traces Scheme 1ME 2ME 3ME 4ME 5ME 6ME
EGT 0.44 0.72 0.78 0.79 0.79 0.79
T5000H HiCuts 1.00 1.98 2.95 3.85 4.32 4.35
HyperCuts 1.16 2.32 3.46 447 4.67 4.68
HBS 151 2.97 4.14 4.64 473 474
EGT 0.41 0.72 0.81 0.82 0.82 0.82
T5000L HiCuts 0.98 1.95 2.91 3.82 4.26 429
HyperCuts 1.15 2.29 3.42 445 4.64 4.64
HBS 1.48 2.92 4.16 4.80 4,95 497
EGT 0.44 0.73 0.78 0.79 0.79 0.79
HiCuts 0.99 1.98 2.95 3.85 4.32 4.35
T5000HN HyperCuts 1.16 2.32 3.46 4.47 4.67 4.68
HBS 150 297 4.15 4,63 473 474
EGT 0.41 0.72 0.81 0.82 0.82 0.82
HiCuts 0.98 1.95 291 3.82 4.27 4.29
T5000LN HyperCuts 1.15 2.29 3.42 445 4.64 4.64
HBS 1.48 2.92 4.15 4.80 4.95 4,97
Table 5

Average number of memory accesses and memory requirements for rule table
T5000.

HBS EGT HiCuts HyperCuts
T5000H 215 107.3 30.0 19.3
T5000L 21.2 115.7 30.7 194
T5000HN 215 117.7 30.0 19.3
T5000LN 21.2 115.7 30.7 19.5
Memory(KB) 4986 84 4043 4449

locality, respectively. High locality means a high probability of re-
peated packets containing the same five header fields for packet
classification. Trace files also associate each packet with the orig-
inal rule generating the packet. To test the rule cache, two addi-
tional packet traces, TS000HN and T5000LN, are generated from
T5000H and T5000L, respectively, with the following constraint:
the least significant (32-len) bits of the destination and source IP
address field values of each packet are randomly complemented if
the associated prefix length is len. The suffix N implies LAN-based
traffic where repeated packets come from the same source subnet
or go to the same destination subnet. LAN-based traffic also im-
plies the spatial locality of packets. All packets in the experiments
are assumed to be the smallest Ethernet packets of 64 bytes.

Table 4 shows the forwarding rates in million packets per
second (MPPS) for HBS, EGT, HiCuts, and HyperCuts. The variations
of different trace files have no impact on the forwarding rates of
all tested schemes because no cache takes advantage of packet
temporal locality. The forwarding rate achieved by HBS increases
faster than that of other schemes when more processing MEs
are used. In general, HBS performs the best and EGT performs
the worst. To further find the reasons for the forwarding rate
difference among these schemes, we analyze the average numbers
of SRAM memory accesses in Table 5, which are computed from
one of the processing MEs. None of these four schemes can achieve
the maximum forwarding rate (i.e., line speed) of 6.46 MPPS
for [XP2400. Therefore, the proposed cache schemes are used to
achieve the line speed of 6.46 MPPS for IXP2400.

Before we demonstrate the performance results of the proposed
cache schemes, we also give the memory requirements of the
tested packet classification schemes in Table 5. The memory
requirements of HBS, EGT, HiCuts, and HyperCuts for rule table
T5000 are 4986, 84, 4043, and 4449 kB, respectively. EGT requires
the least amount of memory, but its forwarding rate is the worst.
HBS, HiCuts, and HyperCuts require around 4-5 MB of memory;
HBS needs slightly more memory because of the rule pushing and
auxiliary nodes. Compared with the bitmap-RFC (a compressed
RFC-like scheme) proposed in [22], which needs 43.4 MB for 5700

rules, the memory requirements for HBS, HiCuts, and HyperCuts
are much better.

The CRC units supported in the IXP2400 network processor are
used to implement the hash function for mapping the five header
field values of an incoming packet to the correct cache entry in
H-cache and R-cache. In IXP2400, two hashing function units are
available: SHaC and CRC units. Only one SHaC function unit is
shared by all MEs. Therefore, calling SHaC unit by all processing
ME:s for all packets results in heavy workload on the SHaC unit and,
thus, longer processing time. On the contrary, a CRC unit exists in
each ME. The CRC unit should be used to reduce the overhead of
hashing operations in cache.

Two classes of hashing keys, 5D — k and SA-k, are used in our
experiments. The hashing key in 5D — kis k + k + 16 + 16 + 8
bits extracted from the most significant k bits from source and
destination IP field values, 16 bits from source and destination
port field values, and 8 bits from the protocol field value of the
header of the incoming packet. In SA-k, only the most significant
k bits from the source IP field value is used as the hashing key. By
testing numerous settings of various k values, the settings with the
best search performance for cache schemes are 5D-32, SA-32, 5D-
24, and SA-32 for the H-cache, MH-cache-hint, R-cache, and MR-
cache-hint schemes, respectively.

Hereafter, we focus only on the performance evaluation of HBS
integrated with the proposed caches because HBS performs better
than EGT, HiCuts, and HyperCuts. The hit ratios of all proposed
cache schemes are shown in Table 6. High temporal locality traces
(T5000H and T5000HN) have higher hit ratios than low temporal
locality traces for any cache scheme. For traces with network-
based traffic, such as TS000HN and T5000LN, the hit ratios of
rule caches are much larger than those of header caches. Even for
trace T5000L, R-cache is a little better than H-cache. Consider the
impact of hint-based caches on hit ratios. For traces T5000H and
T5000L, the hit ratios of hint-based caches are worse than those of
non-hint-based caches by around 3%-4%. For traces TS000HN and
T5000LN, the hit ratios of MR-cache-hint are also worse than those
of R-cache by 3%-6%. However, the hit ratios of MH-cache-hint
are much worse than those of H-cache. These hit ratio differences
result from the different hash keys used by the different cache
schemes. If the same hash keys are used, the hit ratios of hint-based
caches are not different from those of non-hint-based caches.
Although SA-32 uses a different hashing key, for the proposed
hint-based caches, it incurs various amounts of loss in term of
hit ratios. Therefore, the overall search throughput of hint-based
caches is improved because a significant amount of miss ratios can
be utilized to reduce search times.

Table 7 summarizes the origins of cache misses. Column F1Miss
indicates the cache miss ratios that occur when the cached F1 tag
does not match header field F1 of the incoming packet. Similarly,
column F1Hit-F2Miss indicates the cache miss ratios that occur
when the cached F1 tag matches header field F1 and the cached
F2 tag does not match header field F2 of the incoming packet.
Column F1F2Hit-F3F4F5Miss indicates the cache miss ratios that
occur when the cached F1 and F2 tags match header fields F1 and
F2 and the cached F3, F4, or F5 tag does not match header field
F3, F4, or F5 of the incoming packet. As the hints stored along with
cache entries are the indices of cached F1 and F2 tags on the level-1
and level-2 expansion lists for previously searched packet header
fields, search spaces on the level-1 and level-2 expansion lists
can be reduced. Search space reduction for F1F2Hit-F3F4F5Miss
cases are the most beneficial because only a small sub-range of
the level-3 expansion list needs to be searched. F1Hit-F2Miss is
the most frequent case for both MH-cache-hint and MR-cache-hint
(Table 7).

Table 8 shows the forwarding rates of HBS enhanced with the
proposed caches of 128 entries. We highlight the cases when the

Y.-K. Chang, F.-C. Kuo /]. Parallel Distrib. Comput. 73 (2013) 1170-1182 1179

Table 6
Hit ratios of HBS with the proposed cache schemes.

Traces Cache size H-cache (%) MH-cache-hint (%) R-cache (%) MR-cache-hint (%)
128 75.61 72.82 75.06 72.57
T5000H (5D-32) 1024 76.50 73.33 76.75 73.29
128 44.30 43.57 44.57 43.57
T5000L (5A-32) 1024 47.18 44,07 48.60 44.19
128 66.76 39.36 75.26 69.62
T5000HN (5D-24) 1024 69.03 40.22 76.80 70.64
128 39.59 22.53 44,39 41.69
T5000LN (SA-32) 1024 42.30 22.92 48.65 42.53
Table 7
Cache miss ratios for HBS with MH-cache-hint and MH-cache-hint.
Traces Cache size F1Miss (%) F1Hit-F2Miss (%) F1F2Hit-F3F4F5Miss (%) 5DHit (%)
128 7.64 17.59 1.48 72.82
T5000H 1024 0.36 23.91 1.73 73.33
128 14.89 38.35 2.97 43,57
MH-cache-hint T5000L 1024 0.84 51.29 351 44.07
-cache- TS000HN 128 11.79 47.12 1.34 3936
1024 1.11 56.19 1.69 40.22
128 22.65 52.06 2.48 22.53
T5000LN 1024 2.49 70.95 3.10 22.92
128 7.36 19.61 1.78 72.57
T5000H 1024 0.38 25.68 2.16 73.29
128 14.31 4191 3.80 43.57
MR-cache-hint T5000L 1024 0.83 54.69 4.72 44.19
T5000HN 128 11.31 18.67 1.79 69.62
1024 1.12 27.47 2.30 70.64
128 21.79 36.24 3.45 41.69
T5000LN 1024 2.45 54.50 4.65 42.53
Table 8
Forwarding rates of proposed cache schemes in MPPS (percentage of max speed).
Cache size = 128 entries 1ME 2ME 3ME 4ME 5ME 6ME
H-cache 3.19(49%) 5.18(80%)
MH-cache-hint 3.71(57% 6.15(95%
T5000H (i) (2) 6.46 (100%)
R-cache 3.05(47%) 5.06(78%)
MR-cache-hint 3.48(54%) 5.80(90%)
H-cache 1.83(28%) 3.46(54%) 4.87(75%) 5.86(91%) | 6.18(96%) | 6.24(97%)
TS000L MH-cache-hint 2.32(36%) 4.36(67%) 5.95(92%) 6.46(100%)
R-cache 1.77(27%) 3.34(52%) 4.77(74%) 5.81(90%) | 6.17(96%) 6.26(97%)
MR-cache-hint 2.17(34%) 4.09(63%) 5.74(89%) 6.46(100%)
H-cache 2.67(41%) 4.71(73%) 6.30(98%)
T5000HN MH-cache-hint 2.49(39%) 4.60(71%) 6.31(98%) 6.46(100%)
R-cache 3.05(47%) 5.07(78%)
MR-cache-hint 3.20(50%) 5.50(85%)
H-cache 1.74(27%) 3.36(52%) 4.80(74%) 5.83(90%) 6.11(95%) 6.18(96%)
T5000LN MH-cache-hint 1.97(34%) 3.80(59%) 5.39(83%) 6.24(96%) 6.40(99%) 6.42(99%)
R-cache 1.77(27%) 3.35(52%) 4.77(74%) 5.83(90%) 6.17(96%) 6.26(97%)
MR-cache-hint 2.05(32%) 3.91(61%) 5.52(85%) 6.33(98%) 6.46(100%)

maximum forwarding rates of 6.46 MPPS supported by IXP2400
reach 6.46 (100%), and use gray cells to indicate when 90%-99% of
the maximum forwarding rates can be achieved. Hint-based caches
perform better than those without hints for all traces, except
that H-cache is better than MH-cache-hint for trace T5000HN
with one or two processing MEs. For high-locality packet traces
T5000H and T5000HN, three MEs are enough for all caches to
achieve maximum forwarding rate, except for the H-cache and
MH-cache-hint running for trace T5000HN. Furthermore, with the
low-locality packet trace T5000L, both MH-cache-hint and MR-
cache-hint can achieve the maximum forwarding rate with four
processing MEs. For traces T5000H and T5000L, MH-cache-hint
performs better than MR-cache-hint when no more than three
MEs are used. When five MEs are utilized, only MR-cache-hint can

achieve the maximum forwarding rate for all traces. Table 9 shows
the average number of memory accesses, which basically follow
trends similar to those of the forwarding rates (Table 8).

To demonstrate the performance advantages of the proposed
cache designs over the original HBS, we use bar charts to
demonstrate the speedups of HBS enhanced with the proposed
cache designs relative to the original HBS running on one ME
(Fig. 7). The performance improvement of the original HBS from
using three to five MEs is insignificant, which implies that the
performance of the original HBS is limited by the data structure
itself, not by the number of MEs used. On the contrary, the
performance improvements of the HBS enhanced by the MH-
cache-hint and MR-cache-hint schemes are limited by the line
speed of the IXP2400. If the line speed of IXP2400 increases, the

1180

Y.-K. Chang, F.-C. Kuo /]. Parallel Distrib. Comput. 73 (2013) 1170-1182

l O HBS B H-Cache O MH-Cache-hint O R-Cache B MR-Cache-hint

O HBS B H-Cache O MH-Cache-hint 0 R-Cache B MR»Cache-hint‘
@ 4.5

Z 40 M
Z 35
2 3.0
T
225
220
15

1.0

IME 2ME 3ME 6ME

4ME 5ME
T5000H

with

elative

speedu

4.5
4.0 1
3.5
3.0
2.5
2.0
1.5
1.0
0.5

speedup relative to HBS with 1 ME

[_NEE _HE

3ME 4ME
T5000L

| .,

IME 2ME SME 6ME

O HBS B H-Cache OO MH-Cache-hint O R-Cache B MR-CaChe-hint‘

l OHBS WH-Cache OOMH-Cache-hint OOR-Cache B MR-Cache-hint

. 4.5

2 40

5

5 3.5

330

T

225

2

ki 2.0

1

5 1.5

g 1.0

S 0.5 s

1IME 2ME 3ME 4ME 5ME 6ME
T5000HN

4.5
4.0 1
3.5
3.0
2.5
2.0
1.5
b1l &
0.5

IME

speedup relative to HBS with | ME

2ME 3ME 4ME

T5000LN

SME

Fig. 7. Speedups of original HBS and HBS enhanced with the proposed cache schemes relative to HBS with 1 ME. (Cache size = 128 entries.)

Table 9
Average number of memory accesses per search.
Traces # of entries HBS H-cache MH-cache-hint R-cache MR-cache-hint
128 21.46 6.56 5.35 6.68 5.49
T5000H 1024 21.46 6.35 4.66 6.28 4.86
128 21.22 13.65 9.70 13.59 9.95
T5000L 1024 21.22 12.93 8.39 12.64 8.76
128 21.46 8.46 9.68 6.63 6.15
T5000HN 1024 21.46 7.93 8.66 6.27 5.21
128 21.24 14.64 12.76 13.64 10.81
T5000LN 1024 21.24 13.97 10.93 12.63 9.13

speedups of the MH-cache-hint and MR-cache-hint schemes are
also expected to increase.

As rule tables may also be updated from time to time,
subsequent experiments are designed to evaluate the performance
of the proposed hint-based caches when updates are considered.
Update frequency is assumed to be 100 or 1000 updates per
second.

We use the Foreign Model simulation extensions of Work-
bench [17] to implement cache invalidation, which invalidates all
cache entries every centisecond or millisecond. We evaluate only
the proposed hint-based caches and show the results in Table 10.
Forwarding rate reductions in percentage caused by update oper-
ations are shown in parentheses. As a result, forwarding rates are
reduced by at most 5.5% when the impact of updates is considered.
Similar to the case of no update, MR-cache-hint needs only five MEs
to achieve the maximum forwarding rate provided by IXP2400 for
all traces.

In pages 6 and 7, we survey some previous work [5,7,10,4],
of which only [5,4] investigate software-based caches because
they do not need additional hardware logic. In [5,4], the authors
implemented the proposed schemes on Intel IXP1200. Table 11

shows the throughput obtained from [5]. The average throughput
of [4] is 803 Mb/s. However, because [5,4] lack cache size
information, a fair comparison with them is difficult to make.

7. Future work

We use [IXP2400 in the experiments because we have an
[XP2400-based development board ENP-2611 made by Radisys in
our laboratory. Thus, we shall use IXP2400 for real implementation.
Aside from IXP2400, the second generation of the Intel IXP net-
work processor family also includes IXP2800, IXP2805, IXP2850,
and IXP2855 [18]. Only IXP2850 and IXP2855 have enabled cryp-
tography functions, which are not used for packet classification.
All IXP28XX series network processors contain more MEs (i.e.,
16) than IXP2400 (i.e., 8). More MEs can bring higher through-
put, but also lead to higher system costs. On the other hand,
Netronome produces the upgraded version of IXP-2XXX compat-
ible network processors, namely, NFP-3216, NFP-3240, and NFP-
6XXX [23], which have more MEs (NFP-3240 has 40 MEs). The
syntax used for NFP network processors are not 100% compatible
with IXP2XXX processors. Function units are not exactly the same

Y.-K. Chang, F.-C. Kuo /]. Parallel Distrib. Comput. 73 (2013) 1170-1182 1181
Table 10
Forwarding rates when updates are considered in caches of 128 entries.
Update (s) 1ME 2ME 3ME 4ME 5ME 6ME
MH 0 3.71 6.15
Cache 100 3.56(—4.0%) 5.96(—3.1%)
Hint 1000 3.52(—5.1%) 5.95(—3.3%)
T5000H =g 0 348 5.80
Cache 100 3.33(—4.3%) 5.59(—3.6%)
Hint 1000 3.29(—5.5%) 5.57(—4.0%)
MH 0 2.32 4.36 5.95
Cache 100 2.26(—2.6%) 4.28(—1.8%) 5.93(—0.3%)
T5000L Hint 1000 2.25(—3.0%) 4.27(—2.1%) 5.92(—0.5%) 6.46
MR 0 2.17 4.09 5.74
Cache 100 2.12(—2.3%) 4.05(—1.0%) 5.68(—1.0%)
Hint 1000 2.09(—3.7%) 4.02(—1.7%) 5.67(—1.2%) 6.41(—0.8%)
MH 0 2.49 4.60 6.31
Cache 100 2.42(—2.8%) 4.51(—2.0%) 6.19(—1.9%)
Hint 1000 2.41(—3.2%) 4.49(—2.4%) 6.19(—1.9%)
T5000HN MR 0 3.20 5.50
Cache 100 3.09(—3.4%) 5.34(—2.9%)
Hint 1000 3.06(—4.4%) 5.32(—3.3%)
MH 0 1.97 3.80 5.39 6.24 6.40 6.42
Cache 100 1.93(—2.0%) 3.76(—1.1%) 5.36(—0.6%) 6.20(—0.6%) 6.37(—0.5%) 6.42(—0.0%)
Hint 1000 1.92(—2.5%) 3.75(—1.3%) 5.35(—0.7%) 6.19(—0.8%) 6.37(—0.5%) 6.40(—0.1%)
T5000LN MR 0 2.05 3.91 5.52 6.33
Cache 100 2.00(—2.4%) 3.84(—1.8%) 5.47(—0.9%) 6.31(—0.3%) 6.46
Hint 1000 1.99(—2.9%) 3.83(—2.0%) 5.46(—1.1%) 6.30(—0.5%)

Table 11
Throughput of scheme proposed in [10] (based on IXP1200).

Number of hash levels All-miss cache throughput (Mb/s)

990
868
729
679
652
498

U WN—=O

as those of IXP2400 (e.g., MEs control store, memory controller,
and media switch fabric). The performance results conducted on
these advanced network processors are more attractive. Therefore,
we intend to obtain boards implemented with these advanced net-
work processors in the near future and to conduct further study on
them. The ultimate goal is to implement a real high-performance
router using such boards.

Nevertheless, instructions for mapping our schemes onto these
processors are still provided. For IXP28XX-based processors:

1. As IXP28XX processors have more MEs (i.e., 16) than IXP2400
(i.e., 8), we can allocate more MEs for packet processing, which
somehow lead to higher throughput.

2. The operation frequency of IXP2800 (1.4 GHz) is faster than that
of IXP2400 (600 MHz). Thus, the time needed for non-memory-
access operations (i.e., register operations) becomes shorter.

3. IXP28XX processors have four SRAM channels instead of the
two in IXP2400, which indicates more SRAM space available
to programmers. In fact, we can distribute the needed data
structure to all four SRAM channels. For example, the data
structure of the cache can be stored in SRAM channel 0, that
of the first dimension of HBS in SRAM channel 1, that of the
second dimension of HBS in SRAM channel 2, and the remaining
data structure in channel 3. This distribution speeds up packet
processing because it reduces the time needed to obtain data
from SRAM.

For NFP-3XXX- and NFP-6XXX-based processors:

1. As NFP series processors have even more MEs, we can allocate
more MEs for packet processing as well.

2. NFP series processors have larger control stores (16 K) than
IXP2400 (4 K); thus, we can embed some shared data structure
into codes to utilize unused space (i.e., by hardcoding). For
example, we can embed the first-dimension data structure
of HBS into the control store, thereby reducing the time for
packet processing. Thus, memory access to SRAM for the first-
dimension data structure is no longer necessary.

3. IXP2400 has per-ME content-addressable memory, but its size
is just 16 entries and it is not shared by all MEs. Therefore,
IXP2400 is not suitable for our proposed cache schemes.
However, NFP processors support additional ternary content-
addressable memory (TCAM; shareable). We can store the
proposed cache in the TCAM to replace the direct mapping
scheme we use for better cache hit ratio.

8. Conclusion

In this paper, we evaluate some well-known packet classifica-
tion schemes such as EGT [1], HiCuts [12], HyperCuts [27], and
HBS [3] by implementing them on an Intel IXP2400 network pro-
cessor. HBS outperforms EGT, HiCuts, and HyperCuts. However,
none of these schemes can achieve the maximum line speed sup-
ported by IXP2400. Therefore, we propose the use of header and
prefix caches to improve the performance of HBS. Furthermore,
these two cache schemes are enhanced with hints stored in cache
entries to reduce the cache miss penalty. The proposed cache
schemes are suitable for any dimension-by-dimension hierarchi-
cal packet classification scheme. HBS enhanced with any of the four
proposed cache schemes can achieve the line speed of [XP2400. In
particular, HBS enhanced with hint-based caches outperforms HBS
enhanced with cache schemes without hints.

References

[1] F.Baboescu,S.Singh, G. Varghese, Packet classification for core routers: is there
an alternative to CAMs? in: Proc. IEEE INFOCOM 2003, vol. 1, 2003, pp. 53-63.

[2] Y.-K. Chang, Fast binary and multiway prefix searches for packet forwarding,
Computer Networks 51 (3) (2007) 588-605.

[3] Y.-K. Chang, Efficient multidimensional packet classification with fast updates,
IEEE Transactions on Computers 58 (4) (2009) 463-479.

1182 Y.-K. Chang, F.-C. Kuo /]. Parallel Distrib. Comput. 73 (2013) 1170-1182

[4] F.Chang, W.-C. Feng, W.-Chi Feng, K. Li, Efficient packet classification of digest
caches, in: Proc. the Third Workshop on Network Processors & Applications,
NP3, 2004.

[5] F. Chang, K. Li, W.-C. Feng, Approximate caches for packet classification, in:
Proc. [EEE INFOCOM 2004, vol. 4, 7-11 March 2004, pp. 2196-2207.

[6] Y.-K. Chang, Y.-C. Lin, Dynamic segment trees for ranges and prefixes, IEEE
Transactions on Computers 56 (6) (2007) 769-784.

[7] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, Wire speed packet classification
without TCAMs: a few more registers (and a bit of logic) are enough, ACM
SIGMETRICS Performance Evaluation Review 35 (1) (2007) 253-264.

[8] A. Feldmann, S. Muthukrishnan, Tradeoffs for packet classification, in: Proc.
IEEE INFOCOM 2000, vol. 3, 26-30 March 2000, pp. 1193-1202.

[9] S. Giordano, G. Procissi, F. Rossi, F. Vitucci, Design of a multi-dimensional
packet classifier for network processors, in: Proc. IEEE ICC 2006, vol. 2, 2006,
pp. 503-508.

[10] K. Gopalan, T. Chiueh, Improving route lookup performance using network
processor cache, in: Proc. the 2002 ACM/IEEE Conference on Supercomputing,
2002, pp. 1-10.

[11] P.Gupta, N. McKeown, Packet classification on multiple fields, ACM SIGCOMM
Computer Communication Review 29 (4) (1999) 147-160.

[12] P. Gupta, N. McKeown, Classifying packets with hierarchical intelligent
cuttings, IEEE Micro 20 (1) (2000) 34-41.

[13] P. Gupta, N. Mckeown, Algorithms for packet classification, IEEE Network 15
(2)(2001) 24-32.

[14] Zhuo Huang, Gang Liu, Jih-Kwon Peir, Greedy prefix cache for IP routing
lookups, in: Proc. the 2009 10th International Symposium on Pervasive
Systems, Algorithms, and Networks, 2009, pp. 92-97.

[15] Intel Corporation, Intel®IXP2400 network processor hardware reference
manual, November 2003.

[16] Intel Corporation, Intel®IXP2400/IXP2800 network processors microengine C
language support reference manual, November 2003.

[17] Intel Corporation, Intel®IXP2400/IXP2800 network processors development
tools user’s guide, March 2004.

[18] E.J. Johnson, A.R. Kunze, IXP2400/2800 Programming: The Complete Micro-
engine Coding Guide, Intel Press, 2003.

[19] T.V. Lakshman, D. Stiliadis, High-speed policy-based packet forwarding
using efficient multi-dimensional range matching, ACM SIGCOMM Computer
Communication Review 28 (4) (1998) 203-214.

[20] B. Lampson, V. Srinivasan, G. Varghese, IP lookups using multiway and
multicolumn search, IEEE/ACM Transactions on Networking 7 (3) (1999)
324-334.

[21] G. Liao, H. Yu, L. Bhuyan, A new IP lookup cache for high performance IP
routers, in: Proc. the 47th Design Automation Conference, DAC'10, 2010,
pp. 338-343.

[22] D. Liu, Z. Chen, B. Hua, N. Yu, X. Tang, High-performance packet classification
algorithm for multithreaded IXP network processor, ACM Transactions on
Embedded Computing Systems 7 (2) (2008).

[23] Network flow processor, NFP-3240 and NFP-6XXX. http://www.netronome.
com.

[24] Y. Qi, L. Xu, B. Yang, Y. Xue, J. Li, Packet classification algorithms: from theory
to practice, in: Proc. [EEE INFOCOM, 2009, pp. 648-656.

[25] RadiSys Corporation, ENP-2611 hardware reference, August 2003.

[26] RadiSys Corporation, ENP software development kit programmer’s guide, April
2004.

[27] S. Singh, F. Baboescu, G. Varghese,]. Wang, Packet classification using
multidimensional cutting, in: Proc. ACM SIGCOMM, August 2003, pp. 25-29.

[28] D. Srinivasan, W.-C. Feng, Performance analysis of multi-dimensional packet
classification on programmable network processors, Computer Communica-
tions 28 (15) (2005) 1752-1760.

[29] V. Srinivasan, S. Suri, G. Varghese, Packet classification using tuple space
search, in: Proc. ACM SIGCOMM, 1999, pp. 135-146.

[30] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, Fast and scalable layer four
switching, ACM SIGCOMM Computer Communication Review 28 (4) (1998)
191-202.

[31] C.-F. Su, High-speed packet classification using segment tree, in: Proc. IEEE
GLOBECOM, vol. 1, 2000, pp. 582-586.

[32] D.E. Taylor, Survey and taxonomy of packet classification techniques, ACM
Computing Surveys 37 (3) (2005) 238-275.

[33] D.E. Taylor, J.S. Turner, ClassBench: a packet classification benchmark,
[EEE/ACM Transactions on Networking 15 (3) (2007) 499-511.

[34] Nian-Feng Tzeng, Routing table partitioning for speedy packet lookups in
scalable routers, IEEE Transactions on Parallel and Distributed Systems 17 (5)
(2006) 481-494.

[35] B. Xu, D. Jiang, J. Li, HSM: a fast packet classification algorithm, in: Proc. IEEE
AINA 2005, vol. 1, 2005, pp. 987-992.

[36] J. Xu, M. Singhal, J. Degroat, A novel cache architecture to support layer-four
packet classification at memory access speeds, in: Proc. IEEE INFOCOM, 2000,
pp. 1445-1454.

Yeim-Kuan Chang received Ph.D. degree in Computer
Science from Texas A&M University, College Station, in
1995. He is currently a Professor in the Department of
Computer Science and Information Engineering, National
Cheng Kung University, Taiwan. His research interests
include Internet router design, computer architecture, and
multiprocessor systems.

Fang-Chen Kuo received the M.S. degree in Computer
Science and Information Engineering from National Cheng
Kung University, Taiwan, Republic of China, in 2006. He is
currently working toward the Ph.D. degree in Computer
Science and Information Engineering at National Cheng
Kung University, Taiwan, Republic of China. His current
s research interests include high-speed networks and high-
performance Internet router design.

http://www.netronome.com
http://www.netronome.com
http://www.netronome.com
http://www.netronome.com

	Hint-based cache design for reducing miss penalty in HBS packet classification algorithm
	Introduction
	Related work
	Baseline packet classification
	Binary prefix search
	Binary range search
	Hierarchical binary search for packet classification

	Proposed cache schemes
	Header cache (H-cache)
	Header cache with hints (H-cache-hint)
	Rule cache
	Rule cache with hints (R-cache-hint and MR-cache-hint)

	Implementation issues in the IXP2400 network processor
	IXP2400 hardware brief
	Resource allocation
	Data structure design of evaluated packet classifier
	Data structure design of proposed caches

	Performance evaluation
	Future work
	Conclusion
	References

