
Dynamic Cache Invalidation Scheme in IR-based Wireless
Environments

Yeim-Kuan Chang, I-Wei Ting and Tai-Hong Lin
National Cheng Kung University, Tainan, Taiwan

{ykchang, p7893113}@mail.ncku.edu.tw

Abstract--Traditional cache invalidation schemes are not
suitable to be employed in wireless environments due to the
affections of mobility, energy consumption, and limited
bandwidth. Cache invalidation report (IR) is proposed to deal
with the cache consistency problem. However, the main
drawback of IR-based schemes is the long latency of data access
because the mobile hosts (MHs) need to wait next IR interval
for cache invalidation when the cache hit happens. In this paper,
we propose a Dynamic Invalidation Report (DIR) to reduce the
latency of data access when the MHs query data. DIR contains
an early cache validation mechanism by utilizing the validation
messages. Therefore, the MHs can verify their cached data as
soon as possible. Next, we design a predictive method to
dynamically adjust IR interval to further reduce the latency
called DIR-AI (DIR with Adjustable Interval) scheme. Finally,
we evaluate the performance of the DIR and DIR-AI and
compare them with the existing invalidation report schemes by
using NS2 (Network Simulator). The experimental results show
that DIR reduces averagely 54.3% and 34.3% of latency; DIR-
AI reduces averagely 57.35 and 38.6% of latency compared
with TS (TimeStamp) and UIR (Updated IR) schemes
respectively.

Keywords: cache consistency, dynamic, invalidation report,
latency, wireless networks.

1. Introduction
In recent years, the demand for advanced

technologies of mobile computing is growing up
significantly. Many wireless communication protocols
provide different services for accessing resources in the
wireless networks. People can obtain their desired
application service from Internet at anytime and
anywhere. Figure 1 shows a typical wireless architecture.
Mobile Support Station (MSS) or called Base Station (BS)
is a powerful hardware with large transmission range for
communicating with mobile hosts (MHs). A server is a
service component connected to MSS. MHs are mobile
users which carry devices such as notebooks, PDA’s, or
cell phones who would like to get information from MSS.
A client is a process residing in MH that cooperates with
server. A database connected to MSS stores data items
needed by server and clients. The main task of a server is
to respond the requests from clients, retrieve data from
database, and send data to clients.

In most data access model (client-server model),
data items are delivered in an on-demand basis. It means
server only responses the request from the clients. When
the client-server model is applied in the wireless
networks, MSS broadcasts data via the wireless channel
to all MHs within its transmission coverage. Therefore,
broadcast scheme is frequently used by many wireless
communication protocols for data access. A broadcast

data delivery system uses one or more servers to satisfy
the requests of users. We first introduce two basic
architectures for broadcast delivery systems: push and
pull [7]. Then we present the advantages of combining
cache techniques with the broadcast system and the
challenge of solving the cache consistency problem in the
wireless networks.

In a push-based system, data transmission is
independent of the actual request patterns. The action of
transmitting data is initialized by the server. Clients only
wait for their requested data passively. Server broadcasts
data to clients continuously and repeatedly. When a user
requests a data item, it needs to wait until the requested
data item is broadcast by the server. In broadcast disk
access model [1], the server broadcasts all data items
repeatedly. The broadcast channel can be thought of as a
disk (broadcasting repeatedly is like disk spinning). MHs
can get their desired data by listening broadcast channel
in a certain time interval as shown in Figure 2. The
fundamental optimization problem is to design broadcast
programs for the server such that we can minimize the
average waiting time of accessing a data item.

In a pull-based system, the specific data item
requested by a user can be observed by the servers. The
action of transmitting data is initialized by the client. The
servers are always waiting for clients’ requests and ready
to respond the requested data to clients as shown in
Figure 3. The servers know the exact number of pending
requests for each data item. We first distinguish the
differences between pull-based broadcast systems and the
traditional on-demand pull systems. The traditional on-
demand pull scheme is a unicast communication protocol.
The requested data is sent through the routing path
between the source and destination. The data can only be
received at the source. However, in the pull-based
broadcast system, MSS sends data by wireless channel.
The MHs in the transmission range of MSS can share the
wireless channels and receive the broadcast data. The
fundamental optimization problem is to design a
scheduling algorithm for the servers so that we can
minimize the average response time.

The main advantage of broadcast scheme is to save
more request uplink bandwidth and power consumption
of MHs. When a data item (hot data) is queried by many

Figure 1: The mobile environments.

MSS or BS

database

mobile hosts

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.118

697

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.118

697

requesters, this data item is only sent once and can be
shared by others.

Caching is an efficient technique for increasing the
performance in data delivery model. The original idea of
caching is that the data accessed by MHs has the
properties of temporal and spatial locality. Higher
temporal and spatial locality ensures that most accesses
will go to the data that were accessed recently in the past
and this data resides in cache. It has been widely used in
different fields such as CPU design, multi-processor,
memory architecture, or router design. Furthermore,
Internet uses caches in proxy servers and cooperative
caching architecture to reduce the network traffic and
average latency of data query significantly. Therefore, the
caching techniques are also proposed to combine with the
broadcast data delivery systems [2][5][6] for improving
the performance of data access.

In wireless networks, D. Barbara and T. Imielinski
first proposed a cache invalidation scheme (called IR
scheme) in which server periodically broadcasts an
invalidation report (IR) [2]. Clients only listen to the
wireless channel for receiving invalidation report pushed
by the server otherwise it is operated in the sleep mode
for saving power as shown in Figure 4. Each IR contains
data updated information during the certain time interval.
Thus, when a client reconnects with the server, it can
validate its cache by next IR messages. Indexing
technique [3] is also proposed to achieve the effective
access of invalidation reports.

The advantages of IR scheme are scalability and
energy efficiency. The IRs and data items can be shared
by all clients listening to the broadcast channel. MHs can
operate in sleep mode most of the time and only be active
when the server broadcasts the invalidation report.
However, a main drawback of IR-based approaches is the
large query delay involved since clients require the
current IR to ensure cache consistency. And if a data item
is judged to be invalid after examining the invalidation
report, the client takes a long waiting time to get the fresh
data item back.

In this paper, we propose an improved scheme called
Dynamic Invalidation Report (DIR) to reduce the data
access latency for MHs. DIR contains an early cache
validation mechanism so that MHs and server can

communicate with each other by utilizing the validation
messages. Therefore, MHs can verify their cached data as
soon as possible. We also define a parameter called
virtual hit ratio to record the number of cache hits from
the cache validation mechanism. Based on the virtual hit
ratio, we design a predictive method to dynamically
adjust IR interval to further reduce the latency called
DIR-AI (DIR with Adjustable Interval) scheme.

The rest of the paper is organized as follows. Section
2 presents the related works. Section 3 describes the
proposed dynamic cache invalidation schemes. The
results of performance evaluation are shown in section 4.
We conclude the paper in section 5.

2. Related works
2.1 Cache consistency problem

Although caching technique can provide additional
performance improvement for data access, it always
needs to deal with the cache consistency problem when
the original data is updated by clients or servers. If not,
MHs may use the invalid cached data and cause the un-
predictive conditions. This problem also arises in the
broadcast systems.

In a pull-based broadcast system, if a client tries to
write the remote data item in the server, it sends a
message of write operation to the server by uplink
channel. The server performs the sequence of these
operations in order, and schedules all requests including
write operation and read operation. The new contents of
updated data have to be broadcast after the write
operation is done, or it will result in stale broadcasting
and cache inconsistency.

In a push-based broadcast system, if a client tries to
update a data, it first updates its cache, then sends the
update message via uplink to server. After receiving the
update message, the server writes new content of the data
to its local cache and database, schedules data, and
disseminates data in next broadcast cycle. If any other
update messages come before scheduling, the data item
would be changed to latest updated value. The clients will
receive data item with value not to their wish in next
cycle. Therefore, the assumption is given that data items
only can be updated on the server side, and cache
consistency can be kept by cache invalidation messages.
These massages are sent by the server, and each client
uses them to remove invalid data from its own cache.

2.2 Invalidation Report
In general, there are two kinds of IR schemes,

stateless and stateful. In the stateless IR schemes [2][6],
server is not aware of the states of each entry in MHs’
data cache. The states indicate whether each entry of

Figure 2: Push-based data delivery model.

….. …..
Listening

Listening

Broadcast program

Figure 3: Pull-based data delivery model.

Request

Response

Request

…..

Listening

Invalidation Report

IR TimeData IR Data IR Data

Figure 4: The concept of cache invalidation scheme.

698698

Ti-2

Cache hit IR
UIR

Ti-2,1 Ti-2,2 Ti-1 Ti-1,1 Ti-1,2 Ti

Figure 6: Latency of cache hit in UIR scheme.

Latency

Ti-2

Cache hit IR

Ti-2,1 Ti-2,2 Ti-1 Ti-1,1 Ti-1,2 Ti

Figure 5: Latency of cache hit in TS scheme.

Latency
cached data is valid or not. This scheme is scalable to
operate invalidation process of MHs. Because MHs can
only wake up in each IR interval to receive the IR
message, much power consumption is saved by MHs.

In the stateful schemes [8], server has the knowledge
of status of cached data in MHs. When a data object is
updated, server can immediately send the invalidation
report messages to MHs. MHs do not need to wait for the
next IR interval to verify the cache. Compared to the
stateless schemes, the stateful schemes can reduce the
latency of the data objects. But server needs to maintain
complex data structures for the states of the MHs’ data
cache. Also, MHs will waste power in active mode in
order to wait for the IR message at anytime. In wireless
networks, the power concern is the most important
consideration. Therefore, we focus on the discussion of
stateless schemes and briefly present two popular
schemes as follows.

2.3 TimeStamp (TS)
The TS [2] algorithm is a stateless IR-based

invalidation method. The server generates IRs and
broadcasts them periodically at time Ti = iL (i is a time
index; L is an IR cycle). An IR is a history that records
the data items that have been changed in the last w
seconds, L ≤ w. When an MH receives an IR, for each
data item in its cache, said j, it compares the timestamp of
j(tj

c) in the cache to the timestamp of j(tj) in the
invalidation report. If tj

c ≤ tj , the data item j will be
removed from the cache.

MHs record a query list Qi ＝｛ j | j has been
queried in the interval [Ti-1 ,Ti]｝.When an MH receives
an IR, it compares tj

c with tj. If some queried data items
are valid, they are returned to the requester (i.e., tj

c ≥ tj)
and the request is removed from the query list. The
remaining query list will be requested via the uplink after
all actions are done. The MH also keeps a variable Tl that
indicates the last time it received an invalidation report. If
the difference between current report timestamp and Tl is
bigger than w, the entire cache is dropped.

2.4 UIR (Updated IR)
The UIR algorithm [6] concentrates on reducing the

waiting latency and is independent of the cache
invalidation strategies combined with IR-based
algorithms to deal with long disconnection problem. UIR
uses a technique similar to the (1,m) indexing [3] to
reduce the query latency. In this strategy, the server
broadcasts an invalidation report every L time units. UIR
also broadcasts a smaller version of the invalidation
report, called Update Invalidation Report, every L/m
time units, where m is the number of times the smaller
reports will be broadcast in each interval. Because the IR
contains the update history of the past w broadcast
seconds, replicating the complete IR m times will
consumes large bandwidth and client’s power.

The common drawback of TS and UIR is the long
latency when the clients query the data item and the local
cache returns the cache hit. It needs to wait next IR
interval to check the data consistency as Figure 5 and
Figure 6.

3. Proposed Dynamic Invalidation Report
Scheme
3.1 Motivation
In a wireless environment, many new factors affect the
performance of cache invalidation scheme.

1. Limited bandwidth: The bandwidth in wireless
networks is much less than that in wired networks. If the
clients always want to keep the cache consistency with
the server, the bandwidth will be consumed more due to
the communication of the cache consistency messages.

2. Mobility and Disconnection: When an MH moves
out of the transmission range of the server, it will
disconnect from the server. Thus, it can not receive any
invalidation messages during the disconnection time.
When an MH reconnects to server, its cache might be
inconsistent because it loses invalidation messages sent
by server. Therefore, cache invalidation algorithms
should consider the problem of reconnecting operation.

3. Power consumption: The MHs can always verify
their cache consistency with the server at anytime.
However, it will waste more power consumption which is
the most importance concern in wireless networks. Thus,
in cache invalidation scheme, reducing power
consumption is always a goal for MHs.

3.2 Assumptions
We utilize the pull-based on-demand schemes and

push-based broadcast schemes to develop a dynamic
invalidation report scheme in order to obtain their
performance advantages. We assume they are mixed with
each other in our schemes. Server broadcasts hot data
repeatedly and continuously and transmits some cold data
on an on-demand basis if it is a pull-based service. The
typical usage of uplink is to request data objects when
cache miss happens. All the requests will be observed by
the server. The server uses the requests to generate
statistic information to schedule data items in the push
situation. We also assume that the update operations only
act on the server side for simplicity. The server is
stateless but it can exactly know the number of requests
at anytime.

Invalidation reports are broadcast by the server as in
TS scheme. The contents of IRs are the updated
information for pass w seconds. And a timestamp is

699699

Figure 7: Operations of early cache validation
mechanism based on the receiving messages.

(1) When server receives a DREQx from a client k
IF dx is classified as a pull-based service
THEN

Return a DREPx to the client k
 IF dx is classified as a push-based service

 THEN
Queue the request and schedule dx at
the begin in the next IR interval

(2) When server receives a EREQx from a client k
Decides that dx is valid or not by compare the
timestamp in the EREQx with the last updated
timestamp of dx in the server’s database

 Return an EREPx to the client k

(3) When a client queries a data dx
IF cache hit
THEN

Send an EREQx message to the server
IF cache miss

 Send a DREQx to the server

(4) When a client receives an EREPx message
IF vx valid bit is “1”
THEN

Use the cache’s value (dx
c) to answer the

query
ELSE

 Invalidate dx
c and send a data request to the

server

(5) When a client receives a DREPx message
Use dx to answer the request and put dx into the
cache. tx

c is the timestamp in the DREPx
message

associated with each data item in IRs. The contents of
requested data items that have been requested in last IR
interval are continuously broadcast after broadcasting the
IRs. This assumption simplifies the problem and not to
discuss the scheduling algorithm. When clients receive
the IRs, they decide which data have to be moved from
their local cache, and compare the timestamps of local
cached item with the timestamps in IRs. The bigger value
of the timestamp, the fresher the content of the data
object. Stale cached items will be removed. If a client
doesn’t receive an IR over w seconds, all of its cached
items will be thrown.

3.3 Early Cache Validation Mechanism
In our proposed Dynamic Invalidation Report (DIR)

scheme, the main idea is that the cache-hit data from the
local cache can be used as soon as possible. In most IR-
based schemes, it takes a long latency to check the
consistency of the cached data. Therefore, we design an
early cache validation mechanism by using early
validation messages to reduce the long latency. This
mechanism is performed when an MH requests a data
item and responses a cache hit from its local cache. When
a client gets a cache hit, it uses the uplink to transmit an
early validation request message to the server. After
receiving this message, the server decides the request data
item is valid or not, and returns an early validation
response message immediately. The early validation
messages contains early validation request message
(EREQ) and early validation response message (EREP).

The MHs receive the EREP from the server to check
the cache hit data is a valid or not. The usage of the early
validation messages reduces the latency problem
obviously. For a hit data item, it might be used
immediately after an early validation message is sent by
server. Although it increases one uplink usage when the
cache hits, the pending query could get response
immediately. If the cached item is valid, it can be used
without any further delay. If the cached item is invalid,
the client would use the uplink to request right away. The
TS scheme has another drawback in this situation. The
uplink traffic will be burst for those many requests that
are sent almost simultaneously when the clients receive
IR and the cache-hit data is valid.

Using EREQ/EREP messages can separate the
requests and also avoid the uplink congestion. Instead of
the value of data, the structure of EREP message just
contains a valid bit. Therefore, for power consumption,
the overload of receiving an EREP is much less than
receiving an IR messages. The original invalidation
mechanism does not change the data structure of
invalidation reports, the character of periodical
broadcasting IRs and the way in which the client
invalidates its cache. The utility of EREQ/EREP
messages overlap with the invalidation reports in TS
scheme just under cache hit condition. The
communication of EREQ/EREP messages is unicast. So
the invalidation report mechanism still works effectively.

The early validation request message (EREQi) and
response message (EREPi) are defined as follows:

EREQi =｛ [i, ti]∣ i is the data ID and ti is a timestamp
of data i such that ti = max(ti

c , Tl)｝. ti
c is

the timestamp of the data i in the client’s
cache, and Tl denotes last time the client
receives IR.

EREPi =｛ [i, vi]∣i is the data ID and vi is a valid bit that
indicates i is valid or not since the timestamp
in EREQj ｝

We also define the structure of data request message.
The DREQj is for a client requesting the data item j and
the DREPj is the response from the server:
DREQj =｛[j, tj]∣ j is the data id and tj is a timestamp (ti
= Tl)｝
DREPj =｛[j, dj, tj]∣ j is the data id, dj is the data object.
tj is the recent updated value of the data j｝

Note that the DREP messages can only be sent when
the requested data item is classified as the cold data. If
the requested item is classified as hot data, the server will
record the query information, generate statistics, and
apply the results to the scheduling algorithms. Figure 7
shows the operations of early validation cache validation

700700

Figure 8: Operations of adjusting IR interval by server.

VHRi, VHRi-1 : defined in section 3.4
LS : the low bound indicates the system load ,
minimum value of Ti
Mingrep :the minimum guarantee service response
time, high bound of Ti
Threshold_h : high threshold of VHRi
Threshold_l : low threshold of VHRi
Ti: the time that server construct a IR
(i is an integer that denotes the ith IR interval)

At interval time Ti, server decides to adjust IR
interval or not

IF (Ti < SL) or (Ti > Mingrep)
THEN Ti+1 = Ti + Li //Not adjust next IR interval

Return

IF VHRi< = Threshold_l

THEN // decrease next IR interval
Ti+1 = Ti + f(VHRi, VHRi-1, Li)

IF VHRi> Threshold_h
THEN // increase next IR interval
Ti+1 = Ti + f(VHRi, VHRi-1, Li)

`mechanism according to the receiving message of server
and client.

3.4 DIR with Adjustable interval
Based on the early cache validation mechanism, we

also propose an improved method to further reduce the
latency. For a certain time interval, said L (the cycle time
to broadcast an invalidation report), the server can
maintain counters of the positive EREP and negative
EREP messages (called the “missed DREP”), which are
sent after cache miss happens. To clarify the description
of our scheme, the valid bit of “positive EREP” is set to
“1” and the valid bit of “negative EREP” is set to “0”. We
define a parameter called “virtual hit ratio” (VHR) to be
the ratio of the number of positive EREP messages to the
total amount of three messages. This VHR parameter
shows to the server that if the VHR is high, most of
clients’ queries in pass L seconds can finish their process
just by sending early validation messages. In contrast, if
the VHR parameter is quite low, the clients’ queries have
to wait for data coming in pass L seconds. We expect that
the VHR parameter is high. In this case, the invalidation
reports may not work very well because most of caches’
consistency is kept by EREQ/EREP messages. On the
other hand, the low VHR indicates that usage of most of
EREQs is actually no use, but just a waste of power
consumption.

A low VHR arises under two conditions: 1) The
update rate is very high on the server. 2) The updated
data items were queried in pass L seconds. These
conditions impact the performance of the early validation
mechanism much more than the high hit ratio condition
does. Thus, we focus on these conditions and make the
server adjusting the IR broadcast interval dynamically.
Reducing the IR interval improves the performance
because, for a push-based service data, a client has to
wait for the next IR. If the next IR comes in quickly, the
response time will also be short. The idea is
straightforward. We decrease IR interval when the virtual
hit ratio is low and increase it when virtual hit ratio is
high. Under the low hit ratio situation, reducing the IR
interval reduces the latency of cache invalidation.
Alternatively, when hit ratio is quite high, adjusting
interval actually also reduces the server’s load while
keeping low latency. Note that we do not discuss how the
server schedule IRs. The scheduling problem is out of
scope in the paper.

We first formally define the notations and VHR
mentioned above:
Vt : the number of “positive EREP” in the tth IR interval.
It : the number of “negative EREP” in the tth IR interval.
Mt : the number of DREQ received by the server in the tth
IR interval. DREQ is the data request message.
PMt : the number of DREQ send after cache miss in the
tth IR interval. Thus, PMt ＝ Mt － It.
VHRt : the virtual hit ratio in the server’s view (computed
in the end of tth IR interval) as Equ. (1)

VHRt ＝
PMtItVt

Vt

++
 ＝

MtVt
Vt
+

 (1)

The virtual hit ratio indicates the performance of
early cache validation mechanism. We expect that the
more cache-hit data can be verified as “positive” and used
immediately.

Due to the affection of temporal locality, server
references the VHRs from the recently IR intervals can
obtain better benefit. Thus, we first let the server keeps
two VHR value from the latest two IR intervals: VHRi and
VHRi-1, VHRi and VHRi-1 are calculated by the server in
the end of ith and (i-1)th IR interval respectively. In the
end of each IR interval, the server computes VHR and
also predicts the (VHRi+1

p) for the next IR interval. The
VHRi+1

p is predicted by simply using the concept of
exponential average as Equ. (2).

 VHRi+1
p ＝αVHRi + (1－α) VHRi-1. (2)

The parameter α controls the relative weight of recent
hit ratio and past history in our prediction. If α＝0, then
VHRi+1

p ＝VHRi-1, and recent hit ratio does not included.
If α＝1, then VHRi+1

p ＝VHRi, and only the most recent
hit ratio VHRi is included. In general, we can reference
the VHR record in each past IR interval from the history
and expand the formula Equ. (2) to Equ. (3) for VHRi+1

p
by substituting for past VHR as follows:

VHRi+1
p ＝ αVHRi + (1 － α)αVHRi-1 + (1 － α)2αVHRi-

2+ ...+ (1－α)jαVHRi-j+ ...+ (1－α)i+1αVHR0. (3)

The VHR0 is defined as a constant. Both (1－α) and α

are less than or equal to 1, so each successive term has
less weight than its predecessor.

701701

Definition Default values
Total data items 1000

Cache size 100 data items
Uplink bandwidth 11Mbps

Downlink bandwidth 11Mbps
Periodic broadcast interval 20 sec

Broadcast window 100s
Data size 16384 bytes

Early validation message size 1024 bytes
Data request message size 1024 bytes

Number of push data 900
Number of pull data 100

Number of hot data (all push data) 120
Number of cold data 880

Probability of access hot data each 80%
α (compute VHRi

p in our scheme) 0.5
LS (low bound of adjusted interval) 10

Mingrep (high bound of adjusted 60
Threshold_h 0.6
Threshold_l 0.5

Table 1: Simulation parameters.
Due to the temporal locality of cache, some terms of

the formula can be cut. If the server considers all pass
information since the initial time, it does not match utility
and the concept of the invalidation reports since the IRs
just contains the updated information in last w seconds.
Therefore, we use the hit ratio in pass w seconds to
predict the next IR interval. Assume Li denotes the
interval of an IR corresponding to the hit ratio VHRi. To
calculate VHRi+1

p, the formula is changed as Equ. (4):

VHRi+1
p ＝ αVHRi + (1 － α)αVHRi-1 + (1 －

α)2αVHRi-2+ ...+ (1－α)cαVHRi-c, (4)
where c is the minimum integer such that Li+ Li-1+ Li-

2+ Li-3+ …+ Li-c ≧ w.

We simply use the ratio of VHRi to VHRi-1 to decide
the adjusting rate of last interval. Because VHRi-1 is the
exponential average in recent w seconds, it is taken as an
expected denominator. If the value of VHRi-1 is quite low,
then server applies Li as the next IR interval. Otherwise,
the server keeps using the old value to broadcast IR. To
compute the exact value of next interval, a function is
defined as follows:

 f(VHRi,VHRi-1, Li) ＝
i

i

i L
VHR
VHR

×
−1

 ＝ Li+1
 (5)

To prevent some excess adjusting, server needs a
threshold of low bound and high bound of Li. The bound
can be set according to the history of VHR.

We show an example to explain the association with
the latency and the virtual hit ratio. We assume the
uplink/downlink bandwidth is 10kbps/200kbps, Li = 20
second, and the size of early validation messages is 1k
bits; the value VHRi-1 computed in the (i-1)th IR interval is
0.5. In the end of the ith interval, the server gets the total
query count of all clients is 100, the total count requested
early validation message is 40, and computes the VHRi =
0.2. It means that 80 queries must wait for the ith
invalidation report and 20 of them is resulted from an
“invalid” early validation message. When ignoring the
receiving IR time, the average response time of clients
which queried in the ith interval is about

100

)
200

1

10

1
(*40

2
*80

k
k

k
kLi ++

 = 8.042 seconds. This value is

the latency of pure IR with early validation. Then since
VHRi is low, the server decreases the interval applied in
the next. Li+1 = Li *

5.0
2.0 = 8. In the end of (i+1)th IR

interval, if the value of VHRi+1 equals to VHRi (0.2), and
both the count of total queries and total requested early
validation messages are the same with the previous
interval, the average response time will reduce to

100

)
200

1

10

1
(*40

2
*80

k
k

k
kLi ++

 = 3.242 seconds. Note that

the second term in the denominator is small. So even if
both the count of total queries and total requested early
validation messages are different, the impact is not large.

4. Performance evaluation
4.1 Simulation environment and parameters

To evaluate the efficiency of various invalidation
algorithms, we implement the simulation program in NS2
network simulator. A server connects to both the wired
and wireless networks, and a database is located inside
the server. The database can only be updated by BS while
the queries are made on the client side. There are two
ways to classify the data items: 1) the hot data and the
cold data 2) the push-based service data and the pull-
based service data. If a requested data item is in a push-
based service, BS will broadcast it after next IR.
Alternatively, if a data item is in pull-based service, BS
returns the data item. For each request, MHs have a large
probability (80 percent) to access a hot data and a low
probability (20 percent) to access a cold data. The two
classifications do not overlap. Here we assume that all
hot data items are in a push-based service. MHs can get
the hot data items by just listening to the broadcast
channel. Both the updated/requested data IDs and the
corresponding event times are generated in an
exponential average. Each MH contains a local cache that
can store 100 data items. At the initial time of simulation,
the cache will be randomly filled with the hot items and
the cold items of the ratio mentioned above. Most of the
system parameters are listed in Table 1.

4.2 Results
We first measure the latency of requested data under

TS, UIR, DIR, and DIR-AI schemes as shown in Figure 9
(a), (b), (c), and (d), respectively. In TS [2] and UIR [5]
schemes, a requested data may be gotten after receiving
two invalidation reports due to the result of cache
consistency. The latency coverage of TS is about
9.9~13.7 seconds, UIR is about 6.8~9.6 seconds, DIR is
about 4.2~6.7 seconds and DIR-AI is about 3.6~6.7
seconds. When the query rate decreases, the latency
increases substantially. In most situations, the former two
algorithms (TS and UIR) have the same deviation such
that when the number of clients increases, the latency
increases more obviously than DIR and DIR-AI schemes.
The reason is that both TS and UIR are constant-interval

702702

Figure 9 (a): Latency of TS scheme.

Latency of TS scheme

6

8

10

12

14

16

18

20

5 10 20 30 40

Number of clients

A
ve

ra
ge

 la
te

nc
y

(s
ec

.)
query rate=10

query rate=20

query rate=40

query rate=80

Figure 9 (b): Latency of UIR scheme.

Latency of UIR scheme

6

8

10

12

14

16

18

20

5 10 20 30 40

Number of clients

A
ve

ra
ge

 la
te

nc
y

(s
ec

.)

query rate=10

query rate=20

query rate=40

query rate=80

Figure 9 (c): Latency of DIR scheme.

Latency of DIR scheme

2

3

4

5

6

7

8

9

10

5 10 20 30 40

Number of clients

A
ve

ra
ge

 la
te

nc
y

(s
ec

.)

query rate=10

query rate=20

query rate=40

query rate=80

Figure 9 (d): Latency of DIR-AI scheme.

Latency of DIR-AI scheme

2

3

4

5

6

7

8

9

10

5 10 20 30 40

Number of clients

A
ve

ra
ge

 la
te

nc
y

(s
ec

.)

query rate=10

query rate=20

query rate=40

query rate=80

methods. When a client gets a cache hit, it needs to wait
for an IR to validate the queried data. So, if the data is
invalid, many clients use the uplink at the same time, and
these messages become the server’s overhead, therefore
increases the latency.

Although DIR is also a constant-interval algorithm,
it employs the early cache validation mechanism. The
queries have not to be pended until the client receives the
next IR, so it can reduce the latency obviously. The
latency with query rate 10 is suddenly increasing when
the number of clients is 20 to 30. This behavior is similar
to that in TS and UIR schemes because the overhead of
the server increases. In a wireless environment, the
bandwidth will decrease when the communication signal
becomes week. And this condition can be raised when the
communication distant increases or channel conflicts.
Even though that is always a barricade, the latency
decreases. In the other situation, the latency in DIR is
about 5~6.1 seconds.

The performance of DIR-AI is much different from
others. We set the low high bounds of the IR broadcast
interval that indicate the system load and the minimum
guarantee service response time. The low bound depends
on the system capacity and the high bound depends on
the service type. The low bound is set to 10 while the
high bound is 60. By adjusting the interval, the latency is
reduced more than the pure DIR scheme in many
situations.

In fact, whether an algorithm performs well or not is
associated deeply with the value of Threshold_l and
Threshold_h. The values of both parameters can be
decided by experience when request and update
information is enough. At the point when the number of
clients is 5 and the query rate is 80, and latency time is
just about 6.7 seconds. When there are only 5 clients and
the query rate is quite large, the value of VHRt (defined in
section 3) is quite absolute. That is, the sample space is
too deficient for the server to make the interval

adjustment perform well. Therefore, to use the interval
adjusting scheme with 100% efficiency, a premise has to
be made that the number of queries in an interval can’t be
too little. But as the identity of the DIR scheme, the
latency is improved even if the interval become large
since the hit and valid data could be used immediately by
early validation mechanism.

To further evaluate the average response time, we
make several experiments with each algorithm. The
compared results are shown in Figure 10 (a), (b), (c), and
(d). The simulation is made in different combinations
where the mean query rate is 20/40. The result shows that
the latency reduces by using early validation messages.
When the server applies “the virtual hit ratio” to adjusting
the interval, the performance is further improved. The
main part of the reduced latency is the validation time in
DIR while both the validation time and the data getting
time is reduced in DIR with adjusting interval scheme. To
highlight the performance difference, we choose the
mean updated rate of the server to be only 5 and 10. That
is, the server updates the data items in the database
frequently during the simulation time. This decision is
mainly for emphasizing the usage of interval adjusting
method of the server, since the TS and UIR schemes are
affected more deeply when the mean update rate is high.
Actually, if the value of the “virtual hit ratio” (VHRi) is
always stable, the performance of DIR-AI scheme will be
close to the DIR. However, in real world, the value of
VHRi might be unstable. Thus, the choice of Threshold_l
and Threshold_h play an important role in the algorithm.
The decision can be made by server’s experience
statistics and the value can be changed dynamically
according to the system state. To decide the Threshold_l
and Threshold_h, we run 10 times of all algorithms that
the update rate is 10/20/80/320/640, the query rate is
2.5/5/10 and we get an average VHRi of about 0.52. So,

703703

Figure 10 (b): Latency comparison under update
rate=5, query rate=40.

2

4

6

8

10

12

14

16

18

5 10 20 30 40
Number of clients

A
ve

ra
ge

 la
te

nc
y

(s
ec

.)

TS

UIR

DIR

DIR-AI

Figure 10 (a): Latency comparison under update
rate=5, query rate=20.

2

4

6

8

10

12

14

16

18

5 10 20 30 40

Number of clients

A
ve

ra
ge

 la
te

nc
y

(s
ec

.)

TS

UIR

DIR

DIR-AI

Figure 10 (c): Latency comparison under update
rate=10, query rate=20.

2

4

6

8

10

12

14

16

18

5 10 20 30 40
Number of clients

A
ve

ra
ge

 la
te

nc
y

(s
ec

.)

TS

UIR

DIR

DIR-AI

Figure 10 (d): Latency comparison under update
rate=10, query rate=40.

2

4

6

8

10

12

14

16

18

5 10 20 30 40

Number of clients

A
ve

ra
ge

 la
te

nc
y

(s
ec

.)

TS

UIR

DIR

DIR-AI

the value of Threshold_l and Threshold_h is set to 0.5
and 0.6. In fact, the TS scheme may work well in a pure
push-based service environment. But with the advanced
wireless techniques, even the push-based service need to
add an on-demand based function. Thus using early
validation messages is workable to keep cache
consistency as fast as possible.

5. Conclusion

In this paper, we propose a dynamic cache
invalidation schemes. The main goal is to reduce the long
latency in IR-based schemes. The early validation
mechanism is employed to make the MH can check the
data consistency as soon as possible. Further, when the
base station adjusts the IR interval according to the
statues of data request, the performance is improved.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik,
“Broadcast Disks: Data Management for Asymmetric
Communication Environments,” Proc. ACM-SIGMOD,
Int’l Conf. Management of Data, San Jose, pp. 199-210,
June 1995.
[2] D. Barbara and T. Imielinski, “Sleepers and
Workaholics: Caching Strategies in Mobile
Environments,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, vol. 23, no. 2, pp. 1–12, May 1994.
[3] T. Imielinski, S. Viswanathan and B. Badrinath,
“Data on Air: Organization and Access,” IEEE Trans.
Knowledge and Data Eng., vol. 9, pp. 353-372, May/June
1997.

[4] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso.
“Bit-Sequence: An Adaptive Cache Invalidation Method
in Mobile Client/Server Environments,” Mobile Networks
and Applications, vol. 31, no. 2, pp. 115-127.
[5] G. Cao, “A Scalable Low-Latency Cache
Invalidation Strategy for Mobile Environments,” IEEE
transactions on Knowledge and Data Eng, vol. 5, no. 5
September/October 2003.
[6] G. Cao, “A Scalable Low-Latency Cache
Invalidation Strategy for Mobile Environments,” ACM
Int’l Conf. on Mobile Computing and Networking
(MobiCom), pp. 200–209, Aug. 2000.
[7] Joel L. Wolf, Mark S. Squillante, John J. Turek,
Philip S. Yu and Jay Sethuraman “Scheduling Algorithms
for the Broadcast Delivery of Digital Products” IEEE
transactions on Knowledge and Data Eng, vol. 13, no. 5
September/October 2001.
[8] Z. Wang, S. K Das, H. Che, and M. Kumar, “A
scalable asynchronous cache consistency scheme
(SACCS) for mobile environments,” IEEE Trans.
Parallel Distrib. Syst., vol. 15, no. 11, pp. 983-995, 2004.

704704

