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Abstract—Recently, research community has drawn lots of 

attentions in the router virtualization that allows multiple virtual 

router instances running on the same physical router platform. 

Thus, the virtualized router should be able to handle packets 

from different virtual networks. Once the multiple virtual 

routing tables are merged, memory requirement can be reduced 

due to the common entries among virtual routing tables. Many 

previous works use trie-based methods to merge the virtual 

routing tables. In this paper, we propose a range-based merging 

method. The data structure is based on the dynamic multiway 

segment tree (DMST) that is implemented with standard B-tree 

structure. As our experimental results show, faster lookup speed 

and incremental update can be achieved. The proposed method 

performs much better than the trie-based ones in lookup speed 

and scalability, and has similar memory consumption. 

Keywords-virtual routers; segment tree; B-tree 

I. INTRODUCTION 

Network virtualization [10] allows Internet Service Providers 

(ISPs) to dynamically define multiple heterogeneous virtual 

networks on top of the physical network with the isolation 

from each other. With the network virtualization, the 

networking resource can be efficiently utilized. As a result, a 

significant saving can be made in terms of power consumption, 

cost of networking devices and maintenance. Service 

providers can deploy and manage customized services on 

those virtual networks for different end users. In other words, 

each virtual network may run different packet forwarding 

protocols and the flexibility of network can be increased. To 

achieve network virtualization, multiple routers should be able 

to consolidate into a single hardware platform. This is also 

known as router virtualization. 

Router virtualization is a technique that allows multiple 

virtual router instances to co-exist on the same physical router 

platform. In this way, the virtual router platform needs to 

maintain multiple forwarding information bases (FIBs). Each 

FIB has the same characteristics as that of the non-virtual 

routers. Thus, the virtualized router should have the ability to 

handle packets from each virtual network. We can view each 

virtual network as an abstraction of network away from the 

underlying physical network. Virtual networks are 

functionally independent from each other. 

An example of the need for supporting different routing 

functions on the common platform, similar to virtualization, is 

the MPLS layer 3 virtual private networks (L3 VPNs) [8]. The 

service provider’s edge routers, which perform the routing for 

each VPN customer, need to be capable of handling a lot of 

VPNs and maintaining private routing tables of different VPN 

customers. Due to the rapid growth in the VPN market, the 

memory requirement of VPN routing tables has become a 

bottleneck [8]. 

The primary limitation of router virtualization is the 

scalability, i.e., the number of virtual router instances that can 

be supported on the same physical router. Such limitation 

comes from the insufficient resource such as SRAM, TCAM, 

and other on-chip high-speed memory used for caching the 

data structures of packet forwarding information. For example, 

the latest BGP routing table contains more than 450 K prefixes 

[9] while a state-of-art 18-Mb TCAM can only store 500 K 

IPv4 prefixes. As a result, it is hard to support two different 

BGP routing tables using the straightforward method that 

partitions the memory and allocate it to each virtual router 

separately. Thus, we should consider the techniques of 

reducing the memory requirement to improve the scalability. 

The kernel function of a router is the IP lookup. Thus, in 

this paper, we solve the IP lookup problem by treating prefixes 

in the virtual routing tables as ranges. A range R = [e, f] 

matches the destination address d if and only if e  d  f and R 

and the virtual network ID associated with the packet for d 

belong to the same virtual router. The proposed data structure 

is the modification of dynamic multiway segment tree (DMST) 

[1] that supports dynamic range insertions and deletions. 

DMST is a B-tree based data structure, and each node is 

augmented with range set called canonical set. The data 

structures of canonical set are proposed in [7]. Because there 

are many virtual routing tables, we duplicate lots of canonical 

sets which belong to different virtual IDs that guarantee 

isolation among virtual routers. However, some canonical sets 

are unused. To make efficient use of memory, we use the 

bitmap compression technique. 

The keys used to build the DMST are not the traditional 

endpoints. For a range R = [e, f], we use e – 1 and f as the keys 

to be inserted into DMST based on the minus-1 endpoint 

scheme [7], instead of the traditional endpoints e and f. The 

minus-1 endpoint scheme uses fewer keys than the traditional 

ones. Thus, the height of DMST can be smaller and the lookup 

speed of DMST can be faster. 

We use the incremental method to merge multiple virtual 

routing tables into a DMST structure. We first insert all the 

prefixes in the first virtual routing table into DMST structure, 
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and then the next virtual routing table. The same process is 

repeated for all the other virtual routing tables and the DMST 

is augmented. 

The rest of the paper is organized as follows: Background 

and related work is discussed in Section II; our proposed 

scheme is given in Section III; the experimental results of the 

proposed method are presented in Section IV; Section V 

concludes the paper. 

II. BACKGROUND AND RELATED WORK 

A. Related work 

Two methods for router virtualization have been proposed 

in the literature. In the separate scheme, a separate router 

instance is created for each virtual router. While in the merge 

scheme, all the virtual routing tables are merged into a single 

routing table. Both schemes have their pros and cons. 

The separate scheme provides perfect traffic isolation 

among virtual routers hence avoids interference from one 

virtual router to the others. However, the much more router 

hardware resource usage makes it less attractive. In [11], the 

authors use the separate method to implement up to four 

virtual router instances on hardware (on NetFPGA). Their 

experimental results show that the throughput and scalability 

are not high due to the extensive hardware resource usage. 

On the other hand, the merge scheme has higher scalability 

than the separate one. However, its traffic isolation is not so 

strong because all the virtual routers are on the same platform. 

Another important feature of network virtualization is the fair 

resource allocation. This feature is hard to be guaranteed since 

one router can use a larger part of available resources, causing 

the remaining virtual routers starving. Multiroot [2], Trie 

Overlapping [5], Trie Braiding [6] and Tree based 

virtualization [12] adopt this method. 

In [5], the authors present a small, shared data structure for 

IP lookup in a virtualized router using the merged method. 

They use a simple overlapping scheme to merge a number of 

tries of different virtual routers into a merged trie. They have 

used the shared data structure to achieve significant memory 

saving. Their algorithm performs well when the routing tables 

contain similar data structure. They also proposed to use leaf 

pushing to further reduce the node size in the merged trie, by 

pushing all the next-hop in non-leaf nodes to leaf nodes. After 

leaf pushing, every non-leaf node stores only two children 

pointers, while every leaf node stores only next-hop 

information.  

In [6], the authors present another algorithm for the 

merged method by mapping the tries to a merged trie using a 

heuristic method, in order to increase the overlap among the 

different tries and make the final merged trie more compact 

compared to [5]. The scheme enables each trie node to swap 

its left child node and right child node freely. Moreover, the 

algorithm enables the traversal behavior at each node changed 

if the braiding bit set or not. For example, with the braiding bit 

set, the child to be traversed will be different (e.g. taken the 

left child instead of the right child). Although it is memory-

efficient, the complexity of its algorithm makes it less 

attractive. Contrary to [5], their algorithm performs well when 

the virtual routers have less similar data structures. 

In [2], the authors present an improved overlapping 

scheme of [5]. They take account of the address space 

allocation of provider edge networks. Before merging, they 

examine the trie of each virtual router and find the common 

prefix. Due to the extraction of common prefix nodes, they can 

further reduce the memory requirement and improve the 

scalability compared to [5] and [6]. 

B. Prerequisites 

We list some definitions of the core part of DMST 

proposed in [7] that we will need. 

 

Definition 1 (Elementary Interval) Let the set of S 

elementary intervals constructed from a set of W-bit ranges R 

be X = {Xi | Xi = [ei, fi], for i = 1 to S}. Then X must satisfy the 

following properties: 

1.  e1 = 0 and fs = 2
W

-1, 

2.  fi = ei+1-1, for i = 1 to S – 1,  

3. all addresses in Xi are covered by the same subset of R 

called range matching set of Xi (EIi) , and 

4.  EIi is not equal to EIi+1, for i = 1 to S – 1. 

 

Definition 2 (Minus-1 Endpoint Scheme) The two endpoints 

of a range [e, f] are e-1 and f. 

 

Definition 3 (Range Allocation Rule) Range R is stored in 

the canonical set of a node x (x.Cset) if and only if the interval 

of x (intvl(x)) is contained in R, but the interval of the parent 

of x (intvl(parent(x))) is not contained in R. 

 

According to the minus-1 endpoint scheme, the set of 

endpoints constructed from the nine 6-bit ranges of two virtual 

routing tables in Table I are {3, 7,15, 21, 23, 31, 39, 47, 51, 54, 

55}. Considering e1 = 0 and f12 = 63, the twelve elementary 

intervals X1 to X12 can be constructed as shown in Fig. 1.  

For each prefix in Table I, we use its virtual ID vid to 

identify which virtual routing tables it belongs to. Fig. 1 shows 

a possible order-3 tree for the prefixes of two virtual routing 

tables in Table I. Each leaf node is associated with an interval 

called the elementary interval, while each non-leaf node x is 

associated with the one denoted by intvl(x), which is the union 

of elementary intervals in the sub tree rooted at node x. For 

example, the interval associated with the root node in the tree 

covers the entire address space [0, 2
W

-1]. Each node is also 

associated with K canonical sets, where K is the number of 

virtual routing tables. For example, in Fig. 1, the table at top of 

each node is used to represent the 2 canonical sets. If all the 

canonical sets are unused, the table is omitted due to the page 

limitations. Each endpoint is stored in exactly one node as its 

key. 

Based on the range allocation rule, the range matching set 

of an elementary interval is equal to the union of canonical 

sets traversed on the path from the root down to the leaf. For 

example, by taking vid = 0 into consideration, we can know 

the range matching set of elementary interval 1 is {P1} while 

the range matching set of elementary interval 2 is {P1, P3}. 

We can see that every two consecutive elementary intervals 

172



Algorithm Lookup(root,vid,d) 

{ 

  x=root; 

k=0; 

while(x≠null){ 

if(x.Csetvid≠Ø)  Cset[++k] = x.Csetvid; 

if(x is a leaf node)  break; 

x.key0     =  predecessor(x.key1); 

x.keyx.t+1 =  successor(x.keyx.t);  

Binary search on x.key0 to x.keyx.t+1; 

if(x.keyi-1 < d  x.keyi)  x = x.childi-1 

} 

return the highest priority range in Cset[k]; 

} 
Figure 2.  The lookup process 

will not have the same range matching set. When range R1 is 

more specific than range R2, R1 must be stored in the lower 

level than R2. For example, P3 is stored in the lower level than 

P1, because it is more specific. 

The data structure of non-leaf node consisting of t keys is 

formatted in a linear list as [t, Cset1, …, CsetK, child0, key1, 

child1,…,keyt, childt], where Cseti  is a canonical sets belonging 

to vid = i for i = 1 to K and childj is a pointer to the jth sub tree 

for j = 0 to t. Also, the t keys stored in an internal node are 

sorted in increasing order. A leaf node only stores canonical 

sets.  

III. PROPOSED SCHEME 

A. Lookup Process 

When a packet arrives, its virtual ID vid and destination IP 

address d are extracted. According to vid and d, the lookup 

process finds the ranges belonging to vid and containing d. If 

each range is assigned a priority, the lookup process finds the 

highest priority range among all matching ranges. In this paper, 

we use the traditional priority assignment method to assign the 

priority of a range as follows: Range R1 is assigned with a 

higher priority if R1 is more specific than R2. That is to say, 

the prefix with the longest prefix length obtains the largest 

priority. Hence the routing table lookups find the longest 

prefix among all matching prefixes of vid and d. 

The Fig. 2 shows the proposed lookup algorithm. A tree 

traversal is first performed from the root to the leaf node 

corresponding to the elementary interval containing d. While 

traversing the tree, all of the explored nonempty canonical sets 

belonging to vid are recorded in the array Cset[1..k]. Finally, 

the highest priority (the most specific) range must exist in the 

31 39 3   7 

0 1 

P1  

47 54 15 

0 

21 

1 

P2  

0 

55 

1 

P4 P6 

0 

51 

1 

P4 P6 

23 

0 1 

P3  

0 1 

P5  

0 1 

P2  

0 1 

P4 P9 

0 1 

P4  

0 1 

 P7 

0 1 

 P8 

  
 

 
 

[0,3]        [4,7]            [8,15]  [16,21]          [22,23]                  [24,31]                  [32,39]                 [40,47]                   [48,51]       [52,54]      [55,55]    [56,63] 

X1            X2                           X3        X4                  X5                          X6                          X7                          X8                            X9                X10             X11                 X12   

12 Elementary intervals 

w 

z 

v 

s u 

r 

Two canonical sets are 

unused 

One of the two canonical 

sets is unused 

Figure 1.  A possible tree built according to Table I. 

TABLE I.  Example of two routing tables with nine 6-bit prefixes 

ID Virtual ID Prefix Range Endpoints 

start finish 

P1 0 000000/2 [0,15] - 15 

P2 0 010000/2 [16,31] 15 31 

P3 0 000100/4 [4,7] 3 7 

P4 0 100000/1 [32,63] 31 - 

P5 0 010111/5 [22,23] 21 23 

P6 1 110000/2 [48,63] 47 - 

P7 1 110000/4 [48,51] 47 51 

P8 1 110111/6 [55,55] 54 55 

P9 1 100000/3 [32,39] 31 39 
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Algorithm Insert_Endpoint(root,ep) { 

// Traverse the tree to find ep (Step 1) 

01 Perform tree traversal to find arrays p[], s[], f[], b[], and  

k, where p[i] for i=1 to k records the traversed nodes,  

[s[i],f[i]] is the interval associated with node p[i], 

b[i] is index for node p[i] such that  

p[i].keyb[i]-1<ep<p[i].keyb[i]; 

02    if(p[k] is not a leaf node)  return; 

    // Insert ep which is not in the tree (Step 2) 

03    k=k-1;  x=p[k];  i=b[k]; 

04    y = duplicate_a_leaf_node(x.childi-1.Cset)  

05   insert ep and y as x.keyi and x.childi in node x, and x.t++; 

    // node overflow, split x into two nodes, x and y (Step 3) 

06    while( x.t = m ){ 

    // Create a new node y (Step 3.1) 

07   g = m/2;  keyg = x.keyg; 

08   y = create_new_node(); 

09   move childg, [keyg+1,childg+1], …, [keym,childm] from 

node x to node y; 

10   y.Cset = x.Cset; 

11   y.t = m-g;  x.t = g-1; 

    // Adjust x.Cset (Step 3.2)  

12   xSet = {R|R ∈ x.childg-1.Cset and R covers [s[k],keyg]}; 

13   for( h = 0 ; h   x.t ; h++)   

14      x.childh.Cset = x.childh.Cset – xSet; 

15   x.CSet = x.CSet + xSet; 

    // Adjust y.Cset (Step 3.3)  

16   ySet = {R|R ∈ y.child0.Cset and R covers [keyg+1,f[k]]}; 

17   for( h = 0 ; h   y.t ; h++)   

18      y.childh.Cset = y.childh.Cset – ySet; 

19   y.CSet = y.CSet + ySet; 

    // Step 3.4: 

20   if(k = 1){ 

21      root = create_node(t=1, child0=x, key1=ep, child1 = y); 

22      break;} 

23   k = k-1; x = p[k]; j = b[k]; x.t++; 

24   insert keyg and y as x.keyj and x.childj in node x;  } 

} 
Figure 3.  The algorithm that inserts a new endpoint 

Cset[k], and the lookup process returns it as the best matching 

prefix. Its associated next-hop is used to forward the packet.  

For instance, in Fig. 1, we assume that a packet with a 

destination address of d = 48 with a virtual ID vid = 1 arrives. 

The nodes w,z,s,r are traversed, and the nonempty canonical 

sets belonging to vid = 1 are {P6} and {P7}. So, the matching 

ranges are P6 and P7, and the most specific range is P7. 

B. Insertion 

For each prefix in IP routing tables, we can find its 

corresponding range. Suppose the two endpoints of the range 

are e and f, where e is the starting endpoint which can be 

generated by padding the prefix with 0 up to the maximum 

length and f is the finishing endpoint which can be generated 

by padding the prefix with 1 up to the maximum length. Based 

on the minus-1 endpoint scheme, the two endpoints that we 

want to put into the tree are e-1 and f. When inserting 

endpoints, we don’t take the virtual ID into account. We just 

insert e-1 and f merely. 

For each virtual routing table, there are three steps to insert 

a range R = [e, f] of each prefix: 

 

1. If e is not zero, insert e-1 as a new key in the tree. 

2. If f is not 2
w
-1, insert f as a new key in the tree.  

(The w is 32 for IPv4, and 128 for IPv6.) 

3. Insert R into the tree according to the range allocation rule. 

C. Insert an endpoint 

Fig. 3 shows the proposed algorithm that inserts an 

endpoint ep into the tree. It is an adaptation of standard B-tree 

insertion algorithm and is described as follows: 

 

Step 1: Like lookup process, a tree traversal is performed to 

find a key equal to ep. If ep is already in the tree, the search 

for ep terminates at a node that has ep as one of its keys. If ep 

is not in the tree, the search for ep terminates at a leaf node 

whose parent node will contain ep. 

 

Step 2: k is decremented by one, then x and i are set to p[k] 

and b[k], respectively. Let x.key0 and x.keyx.t+1 be the 

predecessor(x.key1) = s[k]-1 and the successor(x.keyx.t) = f[k], 

respectively. The endpoint ep is inserted into node x between 

x.keyi-1 and x.keyi, where x.keyi-1<ep<x.keyi. Because the 

insertion of ep splits the old elementary interval [x.keyi-1+1, 

x.keyi] into two smaller intervals, a new leaf node pointed to 

by y has to be created. Node y is a duplication of leaf node 

pointed to by x.childi-1. Endpoint ep and node y are inserted as 

x.keyi and x.childi, respectively, and x.t is incremented by one. 

 

Step 3: When x.t is smaller than m, the insertion of ep is 

finished. Else node x is full, evenly split it into two nodes 

denoted by x’ and y, respectively. The middle key keyg of x is 

inserted into the x’s parent, where g = m/2. Specifically, the 

keys less than the left of keyg along with the associated child 

pointers remain in x, those greater than the right of keyg are 

put into the new node y, and keyg and y are inserted into the 

x’s parent. Let x’ denote the new x. After node x is split, the 

canonical sets belonging to x’ and y need to be adjusted to be 

in keeping with the range allocation rule. As mentioned in step 

1, node x is pointed to by p[k-1].childj-1 after the tree traversal, 

where p[k-1] is the parent of x and  j is b[k-1], respectively. 

Before proceeding to insert keyg and y. As we can see in 

Fig. 4. Ranges like R1 that contains the intvl(x’) = [p.keyj-1+1, 

x.keyg] was stored in all canonical sets of the children of node 

x’ before splitting. Thus, R1 needs to be removed from all 

these canonical sets of the children of x’ and be inserted into 

x’.Cset. Similarly, those like R2 that contains the intvl(y) = 

[x.keyg+1, p.keyj] needs to be removed from all canonical sets 

of the children of y and be inserted into y.Cset. The above 

canonical set adjustments are shown in Line 12-15 and Line 

16-19 of Fig 3. Finally, keyg and y are inserted as keyj and 

childj in p[k-1], respectively. Since node p[k-1] gets one more 

key, the same split process may need to repeat at p[k-1] if p[k-

1] were full again. In the end, the split process may reach the 

root of tree. As in the regular B-tree, a new root node may 
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Algorithm Insert_Range (root,vid,R) // assume R=[e, f] 

{ 

   // Step 1:  

01  Find LCA node y and the interval [lb, ub] covered by y. 

   // Step 2:  

02  if( [lb, ub] is contained in R){Add R in y.Csetvid;  return;} 

   // Step 3: 

03  Set y.key0 = lb – 1, y.keyy.t+1 = ub. 

04  for( k = 1 to y.t+1 ) 

05    if( R covers [y.keyk-1, y.keyk])  

06      Add R in y.childk-1.Csetvid; 

   // Step 4: 

07  if(y.keyi-1 < e-1 < y.keyi){  

//  i ∈ {1, …,  y.t+1 } and e -1 ≠ any key in y 

08    x =  y.keyi-1; 

09    while( x is not a leaf node){ //i ∈ {1, …,  x.t } 

10    if(x.keyi = e -1){ 

11      for( k = i to x.t )  Add R in x.childk.Csetvid; 

12      break;  } 

13    if(x.keyi-1 < e-1 < x.keyi){ 

14      for( k = i to x.t )  Add R in x.childk.Csetvid; 

15    x= x.childi-1;  } 

16    } 

17  } 

   // Step 5: 

18  if clause which is the same as Step 4 except 

 1. ‘e - 1’ is replaced with ‘f’ 

     2. The first for-loop is replaced with  

for(k = 0 to i - 1) Add R in x.childk.Csetvid; . 

     3. The second for-loop is replaced with 

for(k = 0 to i - 2) Add R in x.childk.Csetvid; . 

} 
Figure 5.  The algorithm that inserts a range 

need to be created and thus the height of tree is increased by 

one, as shown in Line 20-24 of Fig. 3. 

D. Insert a Range 

Fig. 5 shows the proposed algorithm that inserts range R 

based on the range allocation rule. It shows the procedure that 

puts range R into proper canonical sets belonging to vid. We 

describe the detailed steps as follows. 

 

Step 1 (line 01): Find the lowest common ancestor (LCA), -

node y, of the two nodes with keys e-1 and f first. 

Step 2 (line 02): If R contains the interval covered by the node 

y, then R is added in y.Csetvid. 

Step 3 (lines 03-06): If R contains the interval associated with 

any of the children of node y, R is added in that child’s 

canonical set belonging to vid. 

Step 4 (lines 07-17): If e-1 is equal to any key in node y, the 

insertion for R terminates. If y.keyi-1 < e-1 < y.keyi, the 

tree is traversed from node y toward leaf to finds the 

node has e-1 as one of its keys. At each node that x 

traversed, R is added in canonical sets belonging to 

some of x’s children and vid. 

Step 5 (line 18): similar step like Step 4. 

 

For instance, in Fig. 1, we insert a range R = [32, 63] 

belonging to vid = 0, the endpoint 31 is first inserted in the tree 

as shown in Fig. 1. Step 1 finds that the LCA node is z. Step 2 

does nothing, and step 3 inserts R into s.Cset0 and u.Cset0 

because R contains intvl(s) and intvl(u) but not intvl(z). In step 

4, the node v which contains key 31 is reached and R is 

inserted in v.child1.Cset0 and v.child2.Cset0. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

Twelve IPv4 core routing tables were collected from RIS on 

July 16, 2012 [3]. However, router virtualization primarily 

happens at provider edge networks, which are relatively small 

compared to core networks. Thus, we take those IPv4 core 

routing tables as the input of FRuG [4] to generate twelve 

close-to-real synthetic IPv4 routing tables, each has 100k 

prefixes. 

The proposed algorithm was implemented in C and compile 

with gcc-4.4.5 compiler under Debian 6.0 with an 

optimization level –O2 is used. The simulations are run on a 

3.20-GHz Intel Core i5 650 PC that has 8GB main memory.  

To get an accurate count of the clock cycles of processor, we 

use the instruction called ReaD Time Stamp Counter 

(RDTSC).  

B. Lookup Speed 

We compare our lookup process with the state-of-art 

designs. These candidates are the trie overlapping [5] and the 

Figure 4.  Node splitting around x.keyg (a) Before split (b) After split 
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Multiroot [2], each has two variations: with and without leaf-

push. All the candidates are trie based methods, so the worst-

case number of node accesses is close to 32. But, our lookup 

process is the B-tree based methods. So the number of node 

accesses is O(logmN), where m is the order of B-tree and the N 

is the total number of prefixes. For example, Fig. 6 shows that 

when m increases, the number of node accesses decreases. 

And when m is great than 20, the average lookup speed of our 

method will be faster than the average lookup speed of these 

ones. 

C. Memory Efficiency and Scalibility 

The experiment was conducted using routing tables with 

random common prefixes like Multiroot does. The length of 

each common prefix varies from 2 to 5. We count the memory 

usages for four cases: 1) separated method, which stores each 

virtual routing table separately in a binary trie; 2) trie 

overlapping; 3) Multiroot; 4) our method.  

Except for the bitmap compression technique mentioned 

before, we use the base offset technique to further reduce 

memory usages. In this way, each node stores only the first 

child pointer. Any child pointer can be computed by adding 

the base address to the offset of child pointer. To implement 

such technique, we use the dynamic memory allocation in the 

C programming language. Thus, all the child nodes belonging 

to one node are stored in ordered. 

Fig. 7 shows that our method requires much less memory 

compared to the straightforward separate method and has 

similar performance compared to trie-based methods. 

Therefore, our method leads to savings in memory needed 

compared with the existing methods, hence improves the 

scalability considerably.  

D. Update Performance 

In router virtualization, the insertion or deletion of a virtual 

routing table to the virtualized router should be as quick as 

possible. In [2], [5] and [6], authors indicate that when any 

prefix is inserted or deleted, the entire data structure may need 

to be reconstructing in the worst case. 

Therefore, our method is good for update because of the 

support of incremental update. 

V. CONCLUSION 

In this paper, we proposed a novel range-based approach to 

merge a number of virtual routing tables. The data structure is 

the modification of DMST, which is implemented with a B-

tree for dynamic routing tables. Due to the B-tree structure of 

our method, we have improved the lookup speed and the 

update performance. The experiments employing synthetic 

IPv4 provider edge routing tables showed that our method 

performs much better than trie-based methods in terms of 

lookup speed, and has similar memory consumption hence 

improves the scalability. 
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Figure 6.  Lookup speed variation for different orders (12 FIBs). 

Figure 7.  Memory analysis for 12 virtual routing tables 
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