
Dynamic Virtual Routers Using Multiway Segment

Tree

Yeim-Kuan Chang, Zi-Yang Ou
Department of Computer Science and Information Engineering,

National Cheng Kung University,

Tainan, Taiwan

{ykchang, p76001190}@mail.ncku.edu.tw

Abstract—Recently, research community has drawn lots of

attentions in the router virtualization that allows multiple virtual

router instances running on the same physical router platform.

Thus, the virtualized router should be able to handle packets

from different virtual networks. Once the multiple virtual

routing tables are merged, memory requirement can be reduced

due to the common entries among virtual routing tables. Many

previous works use trie-based methods to merge the virtual

routing tables. In this paper, we propose a range-based merging

method. The data structure is based on the dynamic multiway

segment tree (DMST) that is implemented with standard B-tree

structure. As our experimental results show, faster lookup speed

and incremental update can be achieved. The proposed method

performs much better than the trie-based ones in lookup speed

and scalability, and has similar memory consumption.

Keywords-virtual routers; segment tree; B-tree

I. INTRODUCTION

Network virtualization [10] allows Internet Service Providers

(ISPs) to dynamically define multiple heterogeneous virtual

networks on top of the physical network with the isolation

from each other. With the network virtualization, the

networking resource can be efficiently utilized. As a result, a

significant saving can be made in terms of power consumption,

cost of networking devices and maintenance. Service

providers can deploy and manage customized services on

those virtual networks for different end users. In other words,

each virtual network may run different packet forwarding

protocols and the flexibility of network can be increased. To

achieve network virtualization, multiple routers should be able

to consolidate into a single hardware platform. This is also

known as router virtualization.

Router virtualization is a technique that allows multiple

virtual router instances to co-exist on the same physical router

platform. In this way, the virtual router platform needs to

maintain multiple forwarding information bases (FIBs). Each

FIB has the same characteristics as that of the non-virtual

routers. Thus, the virtualized router should have the ability to

handle packets from each virtual network. We can view each

virtual network as an abstraction of network away from the

underlying physical network. Virtual networks are

functionally independent from each other.

An example of the need for supporting different routing

functions on the common platform, similar to virtualization, is

the MPLS layer 3 virtual private networks (L3 VPNs) [8]. The

service provider’s edge routers, which perform the routing for

each VPN customer, need to be capable of handling a lot of

VPNs and maintaining private routing tables of different VPN

customers. Due to the rapid growth in the VPN market, the

memory requirement of VPN routing tables has become a

bottleneck [8].

The primary limitation of router virtualization is the

scalability, i.e., the number of virtual router instances that can

be supported on the same physical router. Such limitation

comes from the insufficient resource such as SRAM, TCAM,

and other on-chip high-speed memory used for caching the

data structures of packet forwarding information. For example,

the latest BGP routing table contains more than 450 K prefixes

[9] while a state-of-art 18-Mb TCAM can only store 500 K

IPv4 prefixes. As a result, it is hard to support two different

BGP routing tables using the straightforward method that

partitions the memory and allocate it to each virtual router

separately. Thus, we should consider the techniques of

reducing the memory requirement to improve the scalability.

The kernel function of a router is the IP lookup. Thus, in

this paper, we solve the IP lookup problem by treating prefixes

in the virtual routing tables as ranges. A range R = [e, f]

matches the destination address d if and only if e  d  f and R

and the virtual network ID associated with the packet for d

belong to the same virtual router. The proposed data structure

is the modification of dynamic multiway segment tree (DMST)

[1] that supports dynamic range insertions and deletions.

DMST is a B-tree based data structure, and each node is

augmented with range set called canonical set. The data

structures of canonical set are proposed in [7]. Because there

are many virtual routing tables, we duplicate lots of canonical

sets which belong to different virtual IDs that guarantee

isolation among virtual routers. However, some canonical sets

are unused. To make efficient use of memory, we use the

bitmap compression technique.

The keys used to build the DMST are not the traditional

endpoints. For a range R = [e, f], we use e – 1 and f as the keys

to be inserted into DMST based on the minus-1 endpoint

scheme [7], instead of the traditional endpoints e and f. The

minus-1 endpoint scheme uses fewer keys than the traditional

ones. Thus, the height of DMST can be smaller and the lookup

speed of DMST can be faster.

We use the incremental method to merge multiple virtual

routing tables into a DMST structure. We first insert all the

prefixes in the first virtual routing table into DMST structure,

978-1-4673-4620-7/13/$31.00 ©2013 IEEE

2013 IEEE 14th International Conference on High Performance Switching and Routing

171

and then the next virtual routing table. The same process is

repeated for all the other virtual routing tables and the DMST

is augmented.

The rest of the paper is organized as follows: Background

and related work is discussed in Section II; our proposed

scheme is given in Section III; the experimental results of the

proposed method are presented in Section IV; Section V

concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Related work

Two methods for router virtualization have been proposed

in the literature. In the separate scheme, a separate router

instance is created for each virtual router. While in the merge

scheme, all the virtual routing tables are merged into a single

routing table. Both schemes have their pros and cons.

The separate scheme provides perfect traffic isolation

among virtual routers hence avoids interference from one

virtual router to the others. However, the much more router

hardware resource usage makes it less attractive. In [11], the

authors use the separate method to implement up to four

virtual router instances on hardware (on NetFPGA). Their

experimental results show that the throughput and scalability

are not high due to the extensive hardware resource usage.

On the other hand, the merge scheme has higher scalability

than the separate one. However, its traffic isolation is not so

strong because all the virtual routers are on the same platform.

Another important feature of network virtualization is the fair

resource allocation. This feature is hard to be guaranteed since

one router can use a larger part of available resources, causing

the remaining virtual routers starving. Multiroot [2], Trie

Overlapping [5], Trie Braiding [6] and Tree based

virtualization [12] adopt this method.

In [5], the authors present a small, shared data structure for

IP lookup in a virtualized router using the merged method.

They use a simple overlapping scheme to merge a number of

tries of different virtual routers into a merged trie. They have

used the shared data structure to achieve significant memory

saving. Their algorithm performs well when the routing tables

contain similar data structure. They also proposed to use leaf

pushing to further reduce the node size in the merged trie, by

pushing all the next-hop in non-leaf nodes to leaf nodes. After

leaf pushing, every non-leaf node stores only two children

pointers, while every leaf node stores only next-hop

information.

In [6], the authors present another algorithm for the

merged method by mapping the tries to a merged trie using a

heuristic method, in order to increase the overlap among the

different tries and make the final merged trie more compact

compared to [5]. The scheme enables each trie node to swap

its left child node and right child node freely. Moreover, the

algorithm enables the traversal behavior at each node changed

if the braiding bit set or not. For example, with the braiding bit

set, the child to be traversed will be different (e.g. taken the

left child instead of the right child). Although it is memory-

efficient, the complexity of its algorithm makes it less

attractive. Contrary to [5], their algorithm performs well when

the virtual routers have less similar data structures.

In [2], the authors present an improved overlapping

scheme of [5]. They take account of the address space

allocation of provider edge networks. Before merging, they

examine the trie of each virtual router and find the common

prefix. Due to the extraction of common prefix nodes, they can

further reduce the memory requirement and improve the

scalability compared to [5] and [6].

B. Prerequisites

We list some definitions of the core part of DMST

proposed in [7] that we will need.

Definition 1 (Elementary Interval) Let the set of S

elementary intervals constructed from a set of W-bit ranges R

be X = {Xi | Xi = [ei, fi], for i = 1 to S}. Then X must satisfy the

following properties:

1. e1 = 0 and fs = 2
W

-1,

2. fi = ei+1-1, for i = 1 to S – 1,

3. all addresses in Xi are covered by the same subset of R

called range matching set of Xi (EIi) , and

4. EIi is not equal to EIi+1, for i = 1 to S – 1.

Definition 2 (Minus-1 Endpoint Scheme) The two endpoints

of a range [e, f] are e-1 and f.

Definition 3 (Range Allocation Rule) Range R is stored in

the canonical set of a node x (x.Cset) if and only if the interval

of x (intvl(x)) is contained in R, but the interval of the parent

of x (intvl(parent(x))) is not contained in R.

According to the minus-1 endpoint scheme, the set of

endpoints constructed from the nine 6-bit ranges of two virtual

routing tables in Table I are {3, 7,15, 21, 23, 31, 39, 47, 51, 54,

55}. Considering e1 = 0 and f12 = 63, the twelve elementary

intervals X1 to X12 can be constructed as shown in Fig. 1.

For each prefix in Table I, we use its virtual ID vid to

identify which virtual routing tables it belongs to. Fig. 1 shows

a possible order-3 tree for the prefixes of two virtual routing

tables in Table I. Each leaf node is associated with an interval

called the elementary interval, while each non-leaf node x is

associated with the one denoted by intvl(x), which is the union

of elementary intervals in the sub tree rooted at node x. For

example, the interval associated with the root node in the tree

covers the entire address space [0, 2
W

-1]. Each node is also

associated with K canonical sets, where K is the number of

virtual routing tables. For example, in Fig. 1, the table at top of

each node is used to represent the 2 canonical sets. If all the

canonical sets are unused, the table is omitted due to the page

limitations. Each endpoint is stored in exactly one node as its

key.

Based on the range allocation rule, the range matching set

of an elementary interval is equal to the union of canonical

sets traversed on the path from the root down to the leaf. For

example, by taking vid = 0 into consideration, we can know

the range matching set of elementary interval 1 is {P1} while

the range matching set of elementary interval 2 is {P1, P3}.

We can see that every two consecutive elementary intervals

172

Algorithm Lookup(root,vid,d)

{

 x=root;

k=0;

while(x≠null){

if(x.Csetvid≠Ø) Cset[++k] = x.Csetvid;

if(x is a leaf node) break;

x.key0 = predecessor(x.key1);

x.keyx.t+1 = successor(x.keyx.t);

Binary search on x.key0 to x.keyx.t+1;

if(x.keyi-1 < d  x.keyi) x = x.childi-1

}

return the highest priority range in Cset[k];

}
Figure 2. The lookup process

will not have the same range matching set. When range R1 is

more specific than range R2, R1 must be stored in the lower

level than R2. For example, P3 is stored in the lower level than

P1, because it is more specific.

The data structure of non-leaf node consisting of t keys is

formatted in a linear list as [t, Cset1, …, CsetK, child0, key1,

child1,…,keyt, childt], where Cseti is a canonical sets belonging

to vid = i for i = 1 to K and childj is a pointer to the jth sub tree

for j = 0 to t. Also, the t keys stored in an internal node are

sorted in increasing order. A leaf node only stores canonical

sets.

III. PROPOSED SCHEME

A. Lookup Process

When a packet arrives, its virtual ID vid and destination IP

address d are extracted. According to vid and d, the lookup

process finds the ranges belonging to vid and containing d. If

each range is assigned a priority, the lookup process finds the

highest priority range among all matching ranges. In this paper,

we use the traditional priority assignment method to assign the

priority of a range as follows: Range R1 is assigned with a

higher priority if R1 is more specific than R2. That is to say,

the prefix with the longest prefix length obtains the largest

priority. Hence the routing table lookups find the longest

prefix among all matching prefixes of vid and d.

The Fig. 2 shows the proposed lookup algorithm. A tree

traversal is first performed from the root to the leaf node

corresponding to the elementary interval containing d. While

traversing the tree, all of the explored nonempty canonical sets

belonging to vid are recorded in the array Cset[1..k]. Finally,

the highest priority (the most specific) range must exist in the

31 39 3 7

0 1

P1

47 54 15

0

21

1

P2

0

55

1

P4 P6

0

51

1

P4 P6

23

0 1

P3

0 1

P5

0 1

P2

0 1

P4 P9

0 1

P4

0 1

 P7

0 1

 P8

[0,3] [4,7] [8,15] [16,21] [22,23] [24,31] [32,39] [40,47] [48,51] [52,54] [55,55] [56,63]

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

12 Elementary intervals

w

z

v

s u

r

Two canonical sets are

unused

One of the two canonical

sets is unused

Figure 1. A possible tree built according to Table I.

TABLE I. Example of two routing tables with nine 6-bit prefixes

ID Virtual ID Prefix Range Endpoints

start finish

P1 0 000000/2 [0,15] - 15

P2 0 010000/2 [16,31] 15 31

P3 0 000100/4 [4,7] 3 7

P4 0 100000/1 [32,63] 31 -

P5 0 010111/5 [22,23] 21 23

P6 1 110000/2 [48,63] 47 -

P7 1 110000/4 [48,51] 47 51

P8 1 110111/6 [55,55] 54 55

P9 1 100000/3 [32,39] 31 39

173

Algorithm Insert_Endpoint(root,ep) {

// Traverse the tree to find ep (Step 1)

01 Perform tree traversal to find arrays p[], s[], f[], b[], and

k, where p[i] for i=1 to k records the traversed nodes,

[s[i],f[i]] is the interval associated with node p[i],

b[i] is index for node p[i] such that

p[i].keyb[i]-1<ep<p[i].keyb[i];

02 if(p[k] is not a leaf node) return;

 // Insert ep which is not in the tree (Step 2)

03 k=k-1; x=p[k]; i=b[k];

04 y = duplicate_a_leaf_node(x.childi-1.Cset)

05 insert ep and y as x.keyi and x.childi in node x, and x.t++;

 // node overflow, split x into two nodes, x and y (Step 3)

06 while(x.t = m){

 // Create a new node y (Step 3.1)

07 g = m/2; keyg = x.keyg;

08 y = create_new_node();

09 move childg, [keyg+1,childg+1], …, [keym,childm] from

node x to node y;

10 y.Cset = x.Cset;

11 y.t = m-g; x.t = g-1;

 // Adjust x.Cset (Step 3.2)

12 xSet = {R|R ∈ x.childg-1.Cset and R covers [s[k],keyg]};

13 for(h = 0 ; h  x.t ; h++)

14 x.childh.Cset = x.childh.Cset – xSet;

15 x.CSet = x.CSet + xSet;

 // Adjust y.Cset (Step 3.3)

16 ySet = {R|R ∈ y.child0.Cset and R covers [keyg+1,f[k]]};

17 for(h = 0 ; h  y.t ; h++)

18 y.childh.Cset = y.childh.Cset – ySet;

19 y.CSet = y.CSet + ySet;

 // Step 3.4:

20 if(k = 1){

21 root = create_node(t=1, child0=x, key1=ep, child1 = y);

22 break;}

23 k = k-1; x = p[k]; j = b[k]; x.t++;

24 insert keyg and y as x.keyj and x.childj in node x; }

}
Figure 3. The algorithm that inserts a new endpoint

Cset[k], and the lookup process returns it as the best matching

prefix. Its associated next-hop is used to forward the packet.

For instance, in Fig. 1, we assume that a packet with a

destination address of d = 48 with a virtual ID vid = 1 arrives.

The nodes w,z,s,r are traversed, and the nonempty canonical

sets belonging to vid = 1 are {P6} and {P7}. So, the matching

ranges are P6 and P7, and the most specific range is P7.

B. Insertion

For each prefix in IP routing tables, we can find its

corresponding range. Suppose the two endpoints of the range

are e and f, where e is the starting endpoint which can be

generated by padding the prefix with 0 up to the maximum

length and f is the finishing endpoint which can be generated

by padding the prefix with 1 up to the maximum length. Based

on the minus-1 endpoint scheme, the two endpoints that we

want to put into the tree are e-1 and f. When inserting

endpoints, we don’t take the virtual ID into account. We just

insert e-1 and f merely.

For each virtual routing table, there are three steps to insert

a range R = [e, f] of each prefix:

1. If e is not zero, insert e-1 as a new key in the tree.

2. If f is not 2
w
-1, insert f as a new key in the tree.

(The w is 32 for IPv4, and 128 for IPv6.)

3. Insert R into the tree according to the range allocation rule.

C. Insert an endpoint

Fig. 3 shows the proposed algorithm that inserts an

endpoint ep into the tree. It is an adaptation of standard B-tree

insertion algorithm and is described as follows:

Step 1: Like lookup process, a tree traversal is performed to

find a key equal to ep. If ep is already in the tree, the search

for ep terminates at a node that has ep as one of its keys. If ep

is not in the tree, the search for ep terminates at a leaf node

whose parent node will contain ep.

Step 2: k is decremented by one, then x and i are set to p[k]

and b[k], respectively. Let x.key0 and x.keyx.t+1 be the

predecessor(x.key1) = s[k]-1 and the successor(x.keyx.t) = f[k],

respectively. The endpoint ep is inserted into node x between

x.keyi-1 and x.keyi, where x.keyi-1<ep<x.keyi. Because the

insertion of ep splits the old elementary interval [x.keyi-1+1,

x.keyi] into two smaller intervals, a new leaf node pointed to

by y has to be created. Node y is a duplication of leaf node

pointed to by x.childi-1. Endpoint ep and node y are inserted as

x.keyi and x.childi, respectively, and x.t is incremented by one.

Step 3: When x.t is smaller than m, the insertion of ep is

finished. Else node x is full, evenly split it into two nodes

denoted by x’ and y, respectively. The middle key keyg of x is

inserted into the x’s parent, where g = m/2. Specifically, the

keys less than the left of keyg along with the associated child

pointers remain in x, those greater than the right of keyg are

put into the new node y, and keyg and y are inserted into the

x’s parent. Let x’ denote the new x. After node x is split, the

canonical sets belonging to x’ and y need to be adjusted to be

in keeping with the range allocation rule. As mentioned in step

1, node x is pointed to by p[k-1].childj-1 after the tree traversal,

where p[k-1] is the parent of x and j is b[k-1], respectively.

Before proceeding to insert keyg and y. As we can see in

Fig. 4. Ranges like R1 that contains the intvl(x’) = [p.keyj-1+1,

x.keyg] was stored in all canonical sets of the children of node

x’ before splitting. Thus, R1 needs to be removed from all

these canonical sets of the children of x’ and be inserted into

x’.Cset. Similarly, those like R2 that contains the intvl(y) =

[x.keyg+1, p.keyj] needs to be removed from all canonical sets

of the children of y and be inserted into y.Cset. The above

canonical set adjustments are shown in Line 12-15 and Line

16-19 of Fig 3. Finally, keyg and y are inserted as keyj and

childj in p[k-1], respectively. Since node p[k-1] gets one more

key, the same split process may need to repeat at p[k-1] if p[k-

1] were full again. In the end, the split process may reach the

root of tree. As in the regular B-tree, a new root node may

174

Algorithm Insert_Range (root,vid,R) // assume R=[e, f]

{

 // Step 1:

01 Find LCA node y and the interval [lb, ub] covered by y.

 // Step 2:

02 if([lb, ub] is contained in R){Add R in y.Csetvid; return;}

 // Step 3:

03 Set y.key0 = lb – 1, y.keyy.t+1 = ub.

04 for(k = 1 to y.t+1)

05 if(R covers [y.keyk-1, y.keyk])

06 Add R in y.childk-1.Csetvid;

 // Step 4:

07 if(y.keyi-1 < e-1 < y.keyi){

// i ∈ {1, …, y.t+1 } and e -1 ≠ any key in y

08 x = y.keyi-1;

09 while(x is not a leaf node){ //i ∈ {1, …, x.t }

10 if(x.keyi = e -1){

11 for(k = i to x.t) Add R in x.childk.Csetvid;

12 break; }

13 if(x.keyi-1 < e-1 < x.keyi){

14 for(k = i to x.t) Add R in x.childk.Csetvid;

15 x= x.childi-1; }

16 }

17 }

 // Step 5:

18 if clause which is the same as Step 4 except

 1. ‘e - 1’ is replaced with ‘f’

 2. The first for-loop is replaced with

for(k = 0 to i - 1) Add R in x.childk.Csetvid; .

 3. The second for-loop is replaced with

for(k = 0 to i - 2) Add R in x.childk.Csetvid; .

}
Figure 5. The algorithm that inserts a range

need to be created and thus the height of tree is increased by

one, as shown in Line 20-24 of Fig. 3.

D. Insert a Range

Fig. 5 shows the proposed algorithm that inserts range R

based on the range allocation rule. It shows the procedure that

puts range R into proper canonical sets belonging to vid. We

describe the detailed steps as follows.

Step 1 (line 01): Find the lowest common ancestor (LCA), -

node y, of the two nodes with keys e-1 and f first.

Step 2 (line 02): If R contains the interval covered by the node

y, then R is added in y.Csetvid.

Step 3 (lines 03-06): If R contains the interval associated with

any of the children of node y, R is added in that child’s

canonical set belonging to vid.

Step 4 (lines 07-17): If e-1 is equal to any key in node y, the

insertion for R terminates. If y.keyi-1 < e-1 < y.keyi, the

tree is traversed from node y toward leaf to finds the

node has e-1 as one of its keys. At each node that x

traversed, R is added in canonical sets belonging to

some of x’s children and vid.

Step 5 (line 18): similar step like Step 4.

For instance, in Fig. 1, we insert a range R = [32, 63]

belonging to vid = 0, the endpoint 31 is first inserted in the tree

as shown in Fig. 1. Step 1 finds that the LCA node is z. Step 2

does nothing, and step 3 inserts R into s.Cset0 and u.Cset0

because R contains intvl(s) and intvl(u) but not intvl(z). In step

4, the node v which contains key 31 is reached and R is

inserted in v.child1.Cset0 and v.child2.Cset0.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Twelve IPv4 core routing tables were collected from RIS on

July 16, 2012 [3]. However, router virtualization primarily

happens at provider edge networks, which are relatively small

compared to core networks. Thus, we take those IPv4 core

routing tables as the input of FRuG [4] to generate twelve

close-to-real synthetic IPv4 routing tables, each has 100k

prefixes.

The proposed algorithm was implemented in C and compile

with gcc-4.4.5 compiler under Debian 6.0 with an

optimization level –O2 is used. The simulations are run on a

3.20-GHz Intel Core i5 650 PC that has 8GB main memory.

To get an accurate count of the clock cycles of processor, we

use the instruction called ReaD Time Stamp Counter

(RDTSC).

B. Lookup Speed

We compare our lookup process with the state-of-art

designs. These candidates are the trie overlapping [5] and the

Figure 4. Node splitting around x.keyg (a) Before split (b) After split

p = x.parent

keyg

keyj-1 keyj

x

R2
R1

x'

Split

keyg

p = x.parent

keyg–1

keyj-1 keyj

y

R2
R1

keyg+1

175

Multiroot [2], each has two variations: with and without leaf-

push. All the candidates are trie based methods, so the worst-

case number of node accesses is close to 32. But, our lookup

process is the B-tree based methods. So the number of node

accesses is O(logmN), where m is the order of B-tree and the N

is the total number of prefixes. For example, Fig. 6 shows that

when m increases, the number of node accesses decreases.

And when m is great than 20, the average lookup speed of our

method will be faster than the average lookup speed of these

ones.

C. Memory Efficiency and Scalibility

The experiment was conducted using routing tables with

random common prefixes like Multiroot does. The length of

each common prefix varies from 2 to 5. We count the memory

usages for four cases: 1) separated method, which stores each

virtual routing table separately in a binary trie; 2) trie

overlapping; 3) Multiroot; 4) our method.

Except for the bitmap compression technique mentioned

before, we use the base offset technique to further reduce

memory usages. In this way, each node stores only the first

child pointer. Any child pointer can be computed by adding

the base address to the offset of child pointer. To implement

such technique, we use the dynamic memory allocation in the

C programming language. Thus, all the child nodes belonging

to one node are stored in ordered.

Fig. 7 shows that our method requires much less memory

compared to the straightforward separate method and has

similar performance compared to trie-based methods.

Therefore, our method leads to savings in memory needed

compared with the existing methods, hence improves the

scalability considerably.

D. Update Performance

In router virtualization, the insertion or deletion of a virtual

routing table to the virtualized router should be as quick as

possible. In [2], [5] and [6], authors indicate that when any

prefix is inserted or deleted, the entire data structure may need

to be reconstructing in the worst case.

Therefore, our method is good for update because of the

support of incremental update.

V. CONCLUSION

In this paper, we proposed a novel range-based approach to

merge a number of virtual routing tables. The data structure is

the modification of DMST, which is implemented with a B-

tree for dynamic routing tables. Due to the B-tree structure of

our method, we have improved the lookup speed and the

update performance. The experiments employing synthetic

IPv4 provider edge routing tables showed that our method

performs much better than trie-based methods in terms of

lookup speed, and has similar memory consumption hence

improves the scalability.

REFERENCES

[1] Yeim-Kuan Chang, Yung-Chieh Lin, and Cheng-Chien Su, "Dynamic
Multiway Segment Tree for IP Lookups and the Fast Pipelined Search

Engine," IEEE Transactions on Computers, VOL. 59, NO. 4, pp. 492-

506, APRIL 2010.
[2] Thilan Ganegedara, Weirong Jiang, Viktor K. Prasanna, "Multiroot:

Towards Memory-Efficient Router Virtualization", IEEE International

Conference on Communications (ICC 2011), Kyoto, Japan, June 2011.
[3] RIS RAW DATA [Online]. [http://data.ris.ripe.net].

[4] T. Ganegedara, W. Jiang, V.K. Prasanna, ”FRuG: A Benchmark for

Packet Forwarding in Future Networks,” to appear in proc. IEEE
IPCCC, 2010.

[5] Jing Fu and Jennifer Rexford, ”Efficient IP-address lookup with a

shared forwarding table for multiple virtual routers,” in proc. ACM
CoNEXT, 2008, pp. 1-12.

[6] Haoyu Song, M. Kodialam, Fang Hao, T.V. Lakshman, ”Building

Scalable Virtual Routers with Trie Braiding,” in proc. IEEE
INFOCOM, 2010, pp. 1-9.

[7] Y.-K. Chang and Y.-C. Lin, “Dynamic Segment Trees for Ranges and

Prefixes,” IEEE Trans. Computers, vol. 56, no. 6, pp. 769-784, June
2007.

[8] E. Rosen and Y. Rekhter, “RFC 2547: BGP/MPLS VPNs,”

http://www.ietf.org/rfc/rfc2547.txt, 1999.
[9] “Route Views project,” Univ. Oregon, Eugene, OR, 2013

[Online].[http://www.routeviews.org].

[10] N.M. Chowdhury, Kabir Mosharaf and Raouf Boutaba, ”A Survey of
Network Virtualization,” The International Journal of Computer and

Telecommunications Networking, 2010, pp. 862 - 876.

[11] Deepak Unnikrishnan and Ramakrishna Vadlamani, Yong Liao and
Abhishek Dwaraki Jeremie Crenne, Lixin Gao, Russell

Tessier, ”Scalable network virtualization using FPGAs”, in proc.

ACM/SIGDA FPGA, 2010, pp. 219 – 228.
[12] H. Le, T. Ganegedara, and V. Prasanna, “Memory-efficient and

scalable virtual routers using fpga,” Field Programmable Gate Arrays

(FPGA), 2011 International Symposium on, 20.

Figure 6. Lookup speed variation for different orders (12 FIBs).

Figure 7. Memory analysis for 12 virtual routing tables

0

200

400

600

800

1000

1200

1400

1600

1800

10 15 20 25 30 35 40 45 50

L
o

o
k

u
p

 s
p

ee
d

 (
cl

o
ck

s)

of Orders

overlap w/
leaf-push

overlap w/o
leaf-push

multiroot w/
leaf-push

multiroot w/o

leaf-push

our method

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12

M
em

o
ry

 r
eq

u
ir

em
en

t
(K

B
y
te

s)

of FIBs

overlap w/o
leaf-push

overlap w/
leaf-push

separate

multiroot w/o
leaf-push

our method
(order = 50)

multiroot w/
leaf-push

176

