計算機組織(Computer Organization)

第一次期中考, 2005-3-30, 時間:100分鐘,總分:110分
1. Explain the design principles of RISC CPUs to outperform CISC CPUs? (10)
2. Explain what is the biased notation and why it is used for floating point number representation? (10)
3. Branch instructions such as beq $2, $3, Exit, use the PC-relative addressing mode as follows.
	op
	rs
	rt
	Address

	PC+4

(Memory)

	

	

	

(a) Explain how branch instructions work based on the above figure and the Fetch&Execute concept.
(5 points), Ans: get a instruction based on PC and execute it, then get the next instruction also based on the PC will usually be old PC + 4 if not branch.
(b) The last field Address is 16-bit long. What does it indicate regarding the range within which the branch instructions can jump? (5 points) Ans: let the 16-bit number be n and the instruction that is next to the branch instruction we are concerned be instruction1. It will jump to the instruction that is n instruction from instruction1.
4. (a) Some computers have explicit instructions to extract an arbitrary field from a 32-bit register to place it in the least significant bits of a reqister. The following figure shows the desired operations: (20 points)

Find the shortest sequence of MIPS instructions that extracts a field for the constant values i stored in register $t0 and j stored in register $t1 from register $t2 and places it in register $t3.

Ans:

 sll $t0, $t3, 9 # shift $t3 left by 9, store in $t0

srl $t0, $t0, 15 # shift $t0 right by 15
(b) Some computers also have explicit instructions (BSF -- Bit Scan Forward) to search the source operand (second operand) for the least significant set bit (1 bit). If a least significant 1 bit is found, its bit index is stored in the destination operand (first operand). If the content in source operand is 0, the content of the destination operand is undefined.. The following figure shows the desired operations:

Find the shortest sequence of MIPS instructions that perform BSF instructions for the values stored in register $t2 and store the index in register $t1.

Ans:

 Assume $5 = 1, $t1 = 0, $7 = 0 initially

C:
and
$6, $t2, $5

bne $5, $6, L1

j
finish

L1:
addi $t1, $t1, 1

srl
$t2, $t2, 1

bne
$t1, 32, C

finish:

5. What is the main idea of Booth algorithm? Explain. Draw the flow chart for the Booth algorithm. (
Use Booth algorithm to calculate 11110111 × 11000111 = -9 × -57 = 513 [25]
	Iteration
	Step
	Multiplicand
	Product

	0
	initial values
	1111 0111
	
	0000
	0000
	1100
	0111 0

	1
	10: Prod=Prod－Mcand

shift right
	1111 0111
	－

	1111

0000

0000
	0111

1001

0100
	1100

1110
	0111 0

0011 1

	2
	11: no operation

shift right
	1111 0111
	
	0000
	0010
	0111
	0001 1

	3
	11: no operation

shift right
	1111 0111
	
	0000
	0001
	0011
	1000 1

	4
	01: Prod=Prod＋Mcand

shift right
	1111 0111
	＋

	1111

1111

1111
	0111

1000

1100
	0011

0001
	1000 1

1100 0

	5
	00: no operation

shift right
	1111 0111
	
	1111
	1110
	0000
	1110 0

	6
	00: no operation

shift right
	1111 0111
	
	1111
	1111
	0000
	0111 0

	7
	10: Prod=Prod－Mcand

shift right
	1111 0111
	－

	1111

0000

0000
	0111

1000

0100
	0000

0000
	0111 0

0011 1

	8
	11: no operation

shift right

	1111 0111
	
	0000
	0010
	0000
	1 1

6. Given this C segment
i = 0;

 while (save[i] == 0)
i = i + 1;

It is translated into the following MIPS instructions. Here we assume that registers $19, $20, and $21 contain values 0, 1, and 0, respectively and the array save starts at Sstart.

 multi $9, $19, 4

 lw
 $8, Sstart($9)

 bne $8, $21, Exit

Loop: add $19, $19, $20

 multi $9, $19, 4

 lw
 $8, Sstart($9)

 beq $8, $21, Loop

Exit:

(a) Instead of assuming registers $19, $20, and $21 contain 0, 1, and 0, respectively. Add some instructions prior to multi $9, $19, 4 to make registers $19, $20, and $21 contain 0, 1, and 0. (5 points)
Answer:
Add $19, $0, $0

Addi $20, $0, 1

Add $21, $0, $0

(b) Why is $19 multiplied by 4 in instruction multi $9, $19, 4? (5 points)
Answer:
Word address multiplied by 4 becomes bytes address.

(c) If the C segment is modified to be
i = 0;

while (save[i] == save[i+1]) i = i + 1;

What will be the MIPS translation? (10 points)

(d) If the number of iterations of the loop is 10, what is the number of instructions executed?

(5 points)
Answer:

of loops

of instr.
 add $19, $0, $0

0

8

 addi $20, $0, 1

1

8+6
 add $21, $0, $0

2

8+12

 multi $9, $19, 4

3

8+18

 lw
 $8, Sstart($9)

 addi $11, $9, 4

 lw
 $10, Sstart($11)

…

…

 bne $8, $10, Exit

Loop: add $19, $19, $20

 multi $9, $19, 4

 lw
 $8, Sstart($9)

 addi $11, $9, 4

9

8+9*6

 lw
 $10, Sstart($11)

10

8+60

 beq $8, $10, Loop

Exit:
7. The first version of the multiplication design shown below is designed for unsigned numbers. How to change this design to multiply signed numbers? Use –9 (–13 as an example to show why the changed design works. (15 points)

[image: image1]
ans:

Initially, 32-to-64 sign-extended multiplicand is put in the multiplicand register and 32-to-64 sign-extended multiplier is put in multiplier register
1. Multiplicand shifts left

2. Multiplier shifts right

3. Sample LSB of multiplier to decide if it is 1 to add, otherwise do nothing
4. if not 64 iterations, go to step 1

[image: image2]

[image: image3]
31 – j bits

j – i bits

i + 1 bits

j – i bits

field

32 – j + ibits

0 0 0 0 0 … 0 0 0 0

field

1st operand

2nd operand

31

0

… 1 0 0 … 0 0 0 0

i zeros

i

i

LSB

64-bit ALU

Control

Write

Product (64 bits)�

 Multiplier

Multiplicand (64 bits)

32-bit ALU

0001110101 (117

1111110111

1001110101

1111110111

1101110101

1111110111

1111110101

1000110101

1111110111

1111110111

1101010101

1111110111

1111100101

1111110111

1111110111

(

1111110111

1111110011

64-bit ALU

Multiplicand (64 bits)

LSB

64-bit ALU

Control

Writee

Product (64 bits)�

 Multiplier

第 2 頁，共 2 頁

